Suppr超能文献

还原型延胡索酸硝酸还原酶调节因子(脱辅基FNR)作为需氧生长的大肠杆菌中FNR的主要形式。

Reduced apo-fumarate nitrate reductase regulator (apoFNR) as the major form of FNR in aerobically growing Escherichia coli.

作者信息

Reinhart F, Achebach S, Koch T, Unden G

机构信息

Institut für Mikrobiologie und Weinforschung, Universität Mainz, Becherweg 15, 55099 Mainz, Germany.

出版信息

J Bacteriol. 2008 Feb;190(3):879-86. doi: 10.1128/JB.01374-07. Epub 2007 Nov 30.

Abstract

Under anoxic conditions, the Escherichia coli oxygen sensor FNR (fumarate nitrate reductase regulator) is in the active state and contains a [4Fe-4S] cluster. Oxygen converts [4Fe-4S]FNR to inactive [2Fe-2S]FNR. After prolonged exposure to air in vitro, apoFNR lacking a Fe-S cluster is formed. ApoFNR can be differentiated from Fe-S-containing forms by the accessibility of the five Cys thiol residues, four of which serve as ligands for the Fe-S cluster. The presence of apoFNR in aerobically and anaerobically grown E. coli was analyzed in situ using thiol reagents. In anaerobically and aerobically grown cells, the membrane-permeable monobromobimane labeled one to two and four Cys residues, respectively; the same labeling pattern was found with impermeable thiol reagents after cell permeabilization. Alkylation of FNR in aerobic bacteria and counting the labeled residues by mass spectrometry showed a form of FNR with five accessible Cys residues, corresponding to apoFNR with all Cys residues in the thiol state. Therefore, aerobically growing cells contain apoFNR, whereas a significant amount of Fe-S-containing FNR was not detected under these conditions. Exposure of anaerobic bacteria to oxygen caused conversion of Fe-S-containing FNR to apoFNR within 6 min. ApoFNR from aerobic bacteria contained no disulfide, in contrast to apoFNR formed in vitro by air inactivation, and all Cys residues were in the thiol form.

摘要

在缺氧条件下,大肠杆菌氧传感器FNR(延胡索酸硝酸还原酶调节因子)处于活性状态并含有一个[4Fe-4S]簇。氧气将[4Fe-4S]FNR转化为无活性的[2Fe-2S]FNR。在体外长时间暴露于空气中后,会形成缺乏铁硫簇的脱辅基FNR(apoFNR)。apoFNR可以通过五个半胱氨酸硫醇残基的可及性与含Fe-S的形式区分开来,其中四个作为Fe-S簇的配体。使用硫醇试剂原位分析了需氧和厌氧生长的大肠杆菌中apoFNR的存在情况。在厌氧和需氧生长的细胞中,膜通透性的单溴联苯胺分别标记了一到两个和四个半胱氨酸残基;细胞通透后,使用不可通透的硫醇试剂也发现了相同的标记模式。对需氧细菌中的FNR进行烷基化处理,并通过质谱法对标记的残基进行计数,结果显示有一种FNR形式具有五个可及的半胱氨酸残基,对应于所有半胱氨酸残基都处于硫醇状态的apoFNR。因此,需氧生长的细胞含有apoFNR,而在这些条件下未检测到大量含Fe-S的FNR。将厌氧细菌暴露于氧气中会导致含Fe-S的FNR在6分钟内转化为apoFNR。与通过空气失活在体外形成的apoFNR不同,需氧细菌中的apoFNR不含二硫键,并且所有半胱氨酸残基都处于硫醇形式。

相似文献

2
3
Stimulation of Fe-S cluster insertion into apoFNR by Escherichia coli glutaredoxins 1, 2 and 3 in vitro.
FEBS Lett. 2004 May 7;565(1-3):203-6. doi: 10.1016/j.febslet.2004.04.007.
8
Oxygen sensing by the global regulator, FNR: the role of the iron-sulfur cluster.
FEMS Microbiol Rev. 1998 Dec;22(5):341-52. doi: 10.1111/j.1574-6976.1998.tb00375.x.
9
The O2 sensitivity of the transcription factor FNR is controlled by Ser24 modulating the kinetics of [4Fe-4S] to [2Fe-2S] conversion.
Proc Natl Acad Sci U S A. 2009 Mar 24;106(12):4659-64. doi: 10.1073/pnas.0804943106. Epub 2009 Mar 4.
10
Reversible cycling between cysteine persulfide-ligated [2Fe-2S] and cysteine-ligated [4Fe-4S] clusters in the FNR regulatory protein.
Proc Natl Acad Sci U S A. 2012 Sep 25;109(39):15734-9. doi: 10.1073/pnas.1208787109. Epub 2012 Sep 10.

引用本文的文献

1
Multiple Adaptive Strategies of Himalayan sp. PCH194 to High-Altitude Stresses.
Front Microbiol. 2022 Jul 6;13:881873. doi: 10.3389/fmicb.2022.881873. eCollection 2022.
2
The Central Role of Redox-Regulated Switch Proteins in Bacteria.
Front Mol Biosci. 2021 Jul 2;8:706039. doi: 10.3389/fmolb.2021.706039. eCollection 2021.
3
Bacterial Stress Responses during Host Infection.
Cell Host Microbe. 2016 Aug 10;20(2):133-43. doi: 10.1016/j.chom.2016.07.009.
4
Three Pseudomonas putida FNR Family Proteins with Different Sensitivities to O2.
J Biol Chem. 2015 Jul 3;290(27):16812-23. doi: 10.1074/jbc.M115.654079. Epub 2015 May 13.
5
Transcriptional regulation of bacterial virulence gene expression by molecular oxygen and nitric oxide.
Virulence. 2014;5(8):794-809. doi: 10.4161/viru.27794. Epub 2014 Oct 31.
6
The sulfur carrier protein TusA has a pleiotropic role in Escherichia coli that also affects molybdenum cofactor biosynthesis.
J Biol Chem. 2013 Feb 22;288(8):5426-42. doi: 10.1074/jbc.M112.431569. Epub 2013 Jan 1.
7
Global transcriptional control by NsrR in Bacillus subtilis.
J Bacteriol. 2012 Apr;194(7):1679-88. doi: 10.1128/JB.06486-11. Epub 2012 Jan 27.
8
Bacterial iron-sulfur regulatory proteins as biological sensor-switches.
Antioxid Redox Signal. 2012 Nov 1;17(9):1215-31. doi: 10.1089/ars.2012.4511. Epub 2012 Mar 6.

本文引用的文献

2
Superoxide-mediated amplification of the oxygen-induced switch from [4Fe-4S] to [2Fe-2S] clusters in the transcriptional regulator FNR.
Proc Natl Acad Sci U S A. 2007 Feb 13;104(7):2092-7. doi: 10.1073/pnas.0609514104. Epub 2007 Jan 31.
3
In vivo cycling of the Escherichia coli transcription factor FNR between active and inactive states.
Microbiology (Reading). 2005 Dec;151(Pt 12):4063-4070. doi: 10.1099/mic.0.28253-0.
4
ClpXP-dependent proteolysis of FNR upon loss of its O2-sensing [4Fe-4S] cluster.
J Mol Biol. 2005 Nov 25;354(2):220-32. doi: 10.1016/j.jmb.2005.09.066. Epub 2005 Oct 7.
5
6
Bacterial redox sensors.
Nat Rev Microbiol. 2004 Dec;2(12):954-66. doi: 10.1038/nrmicro1022.
7
Kinetic analysis of the oxidative conversion of the [4Fe-4S]2+ cluster of FNR to a [2Fe-2S]2+ Cluster.
J Bacteriol. 2004 Dec;186(23):8018-25. doi: 10.1128/JB.186.23.8018-8025.2004.
8
Stimulation of Fe-S cluster insertion into apoFNR by Escherichia coli glutaredoxins 1, 2 and 3 in vitro.
FEBS Lett. 2004 May 7;565(1-3):203-6. doi: 10.1016/j.febslet.2004.04.007.
9
Superoxide destroys the [2Fe-2S]2+ cluster of FNR from Escherichia coli.
Biochemistry. 2004 Jan 27;43(3):791-8. doi: 10.1021/bi0357053.
10
Mechanism of oxygen sensing by the bacterial transcription factor fumarate-nitrate reduction (FNR).
J Biol Chem. 2004 Mar 5;279(10):9278-86. doi: 10.1074/jbc.M309878200. Epub 2003 Nov 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验