Suppr超能文献

感觉延迟对扑翼昆虫偏航动力学的影响。

The influence of sensory delay on the yaw dynamics of a flapping insect.

机构信息

California Institute of Technology, Mail Code 138-78, Pasadena, CA 91125, USA.

出版信息

J R Soc Interface. 2012 Jul 7;9(72):1685-96. doi: 10.1098/rsif.2011.0699. Epub 2011 Dec 21.

Abstract

In closed-loop systems, sensor feedback delays may have disastrous implications for performance and stability. Flies have evolved multiple specializations to reduce this latency, but the fastest feedback during flight involves a delay that is still significant on the timescale of body dynamics. We explored the effect of sensor delay on flight stability and performance for yaw turns using a dynamically scaled robotic model of the fruitfly, Drosophila. The robot was equipped with a real-time feedback system that performed active turns in response to measured torque about the functional yaw axis. We performed system response experiments for a proportional controller in yaw velocity for a range of feedback delays, similar in dimensionless timescale to those experienced by a fly. The results show a fundamental trade-off between sensor delay and permissible feedback gain, and suggest that fast mechanosensory feedback in flies, and most probably in other insects, provide a source of active damping which compliments that contributed by passive effects. Presented in the context of these findings, a control architecture whereby a haltere-mediated inner-loop proportional controller provides damping for slower visually mediated feedback is consistent with tethered-flight measurements, free-flight observations and engineering design principles.

摘要

在闭环系统中,传感器反馈延迟可能对性能和稳定性产生灾难性的影响。苍蝇已经进化出多种专门的机制来减少这种延迟,但在飞行过程中最快的反馈仍然存在显著的延迟,这在身体动力学的时间尺度上仍然是显著的。我们使用果蝇的动态比例机器人模型探索了传感器延迟对偏航转弯的飞行稳定性和性能的影响。机器人配备了实时反馈系统,根据功能偏航轴测量的扭矩进行主动转弯。我们对比例控制器在偏航速度方面的系统响应实验进行了研究,反馈延迟范围很广,在无量纲时间尺度上与苍蝇的延迟相似。结果表明,传感器延迟和允许的反馈增益之间存在基本的权衡,这表明苍蝇(以及很可能是其他昆虫)的快速机械感觉反馈提供了一种主动阻尼源,补充了由被动效应贡献的阻尼源。在这些发现的背景下,一种控制架构,其中平衡棒介导的内回路比例控制器为较慢的视觉介导反馈提供阻尼,与系留飞行测量、自由飞行观察和工程设计原则一致。

相似文献

1
The influence of sensory delay on the yaw dynamics of a flapping insect.
J R Soc Interface. 2012 Jul 7;9(72):1685-96. doi: 10.1098/rsif.2011.0699. Epub 2011 Dec 21.
2
A linear systems analysis of the yaw dynamics of a dynamically scaled insect model.
J Exp Biol. 2010 Sep;213(Pt 17):3047-61. doi: 10.1242/jeb.042978.
3
A tailless aerial robotic flapper reveals that flies use torque coupling in rapid banked turns.
Science. 2018 Sep 14;361(6407):1089-1094. doi: 10.1126/science.aat0350.
4
Strategies for the stabilization of longitudinal forward flapping flight revealed using a dynamically-scaled robotic fly.
Bioinspir Biomim. 2014 Jun;9(2):025001. doi: 10.1088/1748-3182/9/2/025001. Epub 2014 May 22.
6
Controlling free flight of a robotic fly using an onboard vision sensor inspired by insect ocelli.
J R Soc Interface. 2014 Aug 6;11(97):20140281. doi: 10.1098/rsif.2014.0281.
7
Aerodynamic damping during rapid flight maneuvers in the fruit fly Drosophila.
J Exp Biol. 2010 Feb 15;213(4):602-12. doi: 10.1242/jeb.038778.
8
Flying Drosophila stabilize their vision-based velocity controller by sensing wind with their antennae.
Proc Natl Acad Sci U S A. 2014 Apr 1;111(13):E1182-91. doi: 10.1073/pnas.1323529111. Epub 2014 Mar 17.
9
Turning behaviour depends on frictional damping in the fruit fly Drosophila.
J Exp Biol. 2007 Dec;210(Pt 24):4319-34. doi: 10.1242/jeb.010389.
10
Wing motion transformation to evaluate aerodynamic coupling in flapping wing flight.
J Theor Biol. 2014 Dec 21;363:198-204. doi: 10.1016/j.jtbi.2014.07.026. Epub 2014 Aug 12.

引用本文的文献

2
Asynchronous haltere input drives specific wing and head movements in .
Proc Biol Sci. 2024 Jun;291(2024):20240311. doi: 10.1098/rspb.2024.0311. Epub 2024 Jun 12.
3
Machine learning reveals the control mechanics of an insect wing hinge.
Nature. 2024 Apr;628(8009):795-803. doi: 10.1038/s41586-024-07293-4. Epub 2024 Apr 17.
4
Bumblebees compensate for the adverse effects of sidewind during visually guided landings.
J Exp Biol. 2024 Apr 15;227(8). doi: 10.1242/jeb.245432. Epub 2024 Apr 22.
5
Effect of Hindwings on the Aerodynamics and Passive Dynamic Stability of a Hovering Hawkmoth.
Biomimetics (Basel). 2023 Dec 1;8(8):578. doi: 10.3390/biomimetics8080578.
6
The influence of saccades on yaw gaze stabilization in fly flight.
PLoS Comput Biol. 2023 Dec 21;19(12):e1011746. doi: 10.1371/journal.pcbi.1011746. eCollection 2023 Dec.
7
Flies adaptively control flight to compensate for added inertia.
Proc Biol Sci. 2023 Oct 11;290(2008):20231115. doi: 10.1098/rspb.2023.1115.
8
Proprioception gates visual object fixation in flying flies.
Curr Biol. 2023 Apr 24;33(8):1459-1471.e3. doi: 10.1016/j.cub.2023.03.018. Epub 2023 Mar 30.
9
Neuromuscular embodiment of feedback control elements in flight.
Sci Adv. 2022 Dec 14;8(50):eabo7461. doi: 10.1126/sciadv.abo7461.
10
Flies trade off stability and performance via adaptive compensation to wing damage.
Sci Adv. 2022 Nov 16;8(46):eabo0719. doi: 10.1126/sciadv.abo0719. Epub 2022 Nov 18.

本文引用的文献

1
A linear systems analysis of the yaw dynamics of a dynamically scaled insect model.
J Exp Biol. 2010 Sep;213(Pt 17):3047-61. doi: 10.1242/jeb.042978.
2
Fruit flies modulate passive wing pitching to generate in-flight turns.
Phys Rev Lett. 2010 Apr 9;104(14):148101. doi: 10.1103/PhysRevLett.104.148101. Epub 2010 Apr 5.
3
Sensor fusion in identified visual interneurons.
Curr Biol. 2010 Apr 13;20(7):624-8. doi: 10.1016/j.cub.2010.01.064. Epub 2010 Mar 18.
4
Discovering the flight autostabilizer of fruit flies by inducing aerial stumbles.
Proc Natl Acad Sci U S A. 2010 Mar 16;107(11):4820-4. doi: 10.1073/pnas.1000615107. Epub 2010 Mar 1.
5
Within-wingbeat damping: dynamics of continuous free-flight yaw turns in Manduca sexta.
Biol Lett. 2010 Jun 23;6(3):422-5. doi: 10.1098/rsbl.2010.0083. Epub 2010 Feb 24.
6
Dipteran insect flight dynamics. Part 1 Longitudinal motion about hover.
J Theor Biol. 2010 May 21;264(2):538-52. doi: 10.1016/j.jtbi.2010.02.018. Epub 2010 Feb 17.
7
Aerodynamic damping during rapid flight maneuvers in the fruit fly Drosophila.
J Exp Biol. 2010 Feb 15;213(4):602-12. doi: 10.1242/jeb.038778.
8
Wingbeat time and the scaling of passive rotational damping in flapping flight.
Science. 2009 Apr 10;324(5924):252-5. doi: 10.1126/science.1168431.
9
The generation of forces and moments during visual-evoked steering maneuvers in flying Drosophila.
PLoS One. 2009;4(3):e4883. doi: 10.1371/journal.pone.0004883. Epub 2009 Mar 20.
10
Kinematics of slow turn maneuvering in the fruit bat Cynopterus brachyotis.
J Exp Biol. 2008 Nov;211(Pt 21):3478-89. doi: 10.1242/jeb.017590.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验