Korfiatis P, Skiadopoulos S, Sakellaropoulos P, Kalogeropoulou C, Costaridou L
Department of Medical Physics, School of Medicine, University of Patras, 265 00 Patras, Greece.
Br J Radiol. 2007 Dec;80(960):996-1004. doi: 10.1259/bjr/20861881.
The first step in lung analysis by CT is the identification of the lung border. To deal with the increased number of sections per scan in thin-slice multidetector CT, it has been crucial to develop accurate and automated lung segmentation algorithms. In this study, an automated method for lung segmentation of thin-slice CT data is presented. The method exploits the advantages of a two-dimensional wavelet edge-highlighting step in lung border delineation. Lung volume segmentation is achieved with three-dimensional (3D) grey level thresholding, using a minimum error technique. 3D thresholding, combined with the wavelet pre-processing step, successfully deals with lung border segmentation challenges, such as anterior or posterior junction lines and juxtapleural nodules. Finally, to deal with mediastinum border under-segmentation, 3D morphological closing with a spherical structural element is applied. The performance of the proposed method is quantitatively assessed on a dataset originating from the Lung Imaging Database Consortium (LIDC) by comparing automatically derived borders with the manually traced ones. Segmentation performance, averaged over left and right lung volumes, for lung volume overlap is 0.983+/-0.008, whereas for shape differentiation in terms of mean distance it is 0.770+/-0.251 mm (root mean square distance is 0.520+/-0.008 mm; maximum distance is 3.327+/-1.637 mm). The effect of the wavelet pre-processing step was assessed by comparing the proposed method with the 3D thresholding technique (applied on original volume data). This yielded statistically significant differences for all segmentation metrics (p<0.01). Results demonstrate an accurate method that could be used as a first step in computer lung analysis by CT.
通过CT进行肺部分析的第一步是识别肺边界。为了处理薄层多探测器CT中每次扫描切片数量的增加,开发准确且自动化的肺部分割算法至关重要。在本研究中,提出了一种用于薄层CT数据肺部分割的自动化方法。该方法利用了二维小波边缘增强步骤在肺边界描绘中的优势。通过使用最小误差技术的三维(3D)灰度阈值化实现肺体积分割。3D阈值化与小波预处理步骤相结合,成功应对了肺边界分割挑战,如前后交界线和胸膜下结节。最后,为了处理纵隔边界分割不足的问题,应用了具有球形结构元素的3D形态学闭运算。通过将自动得出的边界与手动描绘的边界进行比较,在源自肺部影像数据库联盟(LIDC)的数据集上对所提出方法的性能进行了定量评估。左肺和右肺体积的平均分割性能,肺体积重叠率为0.983±0.008,而在平均距离方面的形状差异为0.770±0.251毫米(均方根距离为0.520±0.008毫米;最大距离为3.327±1.637毫米)。通过将所提出的方法与3D阈值化技术(应用于原始体积数据)进行比较,评估了小波预处理步骤的效果。这在所有分割指标上产生了统计学上的显著差异(p<0.01)。结果表明该方法准确,可作为CT计算机肺部分析的第一步。