Suppr超能文献

成功药物所靶向的人类基因的定量系统水平决定因素。

Quantitative systems-level determinants of human genes targeted by successful drugs.

作者信息

Yao Lixia, Rzhetsky Andrey

机构信息

Department of Biomedical Informatics, Center for Computational Biology and Bioinformatics, Columbia University, New York, New York 10032, USA.

出版信息

Genome Res. 2008 Feb;18(2):206-13. doi: 10.1101/gr.6888208. Epub 2007 Dec 14.

Abstract

What makes a successful drug target? A target molecule with an appropriate (druggable) tertiary structure is a necessary but not the sufficient condition for success. Here we analyzed specific properties of human genes and proteins targeted by 919 FDA-approved drugs and identified several quantitative measures that distinguish them from other genes and proteins at a highly significant level. Compared to an average gene and its encoded protein(s), successful drug targets are more highly connected (but far from being the most highly connected), have higher betweenness values, lower entropies of tissue expression, and lower ratios of nonsynonymous to synonymous single-nucleotide polymorphisms. Furthermore, we have identified human tissues that are significantly over- or undertargeted relative to the full spectrum of genes that are active in each tissue. Our study provides quantitative guidelines that could aid in the computational screening of new drug targets in human cells.

摘要

什么造就了一个成功的药物靶点?具有合适(可成药)三级结构的靶点分子是成功的必要条件,但并非充分条件。在此,我们分析了919种FDA批准药物所靶向的人类基因和蛋白质的特定属性,并确定了几种定量指标,这些指标在高度显著水平上区分了它们与其他基因和蛋白质。与平均基因及其编码的蛋白质相比,成功的药物靶点具有更高的连接性(但远非连接性最高)、更高的中介中心性值、更低的组织表达熵以及更低的非同义与同义单核苷酸多态性比率。此外,我们还确定了相对于每个组织中活跃的所有基因而言,显著过度或不足靶向的人类组织。我们的研究提供了定量指导原则,有助于在人类细胞中对新的药物靶点进行计算筛选。

相似文献

1
Quantitative systems-level determinants of human genes targeted by successful drugs.
Genome Res. 2008 Feb;18(2):206-13. doi: 10.1101/gr.6888208. Epub 2007 Dec 14.
2
Drug target ontology to classify and integrate drug discovery data.
J Biomed Semantics. 2017 Nov 9;8(1):50. doi: 10.1186/s13326-017-0161-x.
3
Yeast as a tool to uncover the cellular targets of drugs.
Biotechnol J. 2006 Mar;1(3):289-98. doi: 10.1002/biot.200500039.
4
Quantitative analysis on the characteristics of targets with FDA approved drugs.
Int J Biol Sci. 2007 Dec 10;4(1):15-22. doi: 10.7150/ijbs.4.15.
5
6
Computational prediction of the effects of non-synonymous single nucleotide polymorphisms in human DNA repair genes.
Neuroscience. 2007 Apr 14;145(4):1273-9. doi: 10.1016/j.neuroscience.2006.09.004. Epub 2006 Oct 19.
9
Druggable targets and targeted drugs: enhancing the development of new therapeutics.
Pharmacology. 2008;82(4):239-44. doi: 10.1159/000157624. Epub 2008 Sep 19.
10
A comparative study of disease genes and drug targets in the human protein interactome.
BMC Bioinformatics. 2015;16 Suppl 5(Suppl 5):S1. doi: 10.1186/1471-2105-16-S5-S1. Epub 2015 Mar 18.

引用本文的文献

4
Signature reversion of three disease-associated gene signatures prioritizes cancer drug repurposing candidates.
FEBS Open Bio. 2024 May;14(5):803-830. doi: 10.1002/2211-5463.13796. Epub 2024 Mar 26.
6
PINNED: identifying characteristics of druggable human proteins using an interpretable neural network.
J Cheminform. 2023 Jul 19;15(1):64. doi: 10.1186/s13321-023-00735-7.
7
OncoRTT: Predicting novel oncology-related therapeutic targets using BERT embeddings and omics features.
Front Genet. 2023 Apr 6;14:1139626. doi: 10.3389/fgene.2023.1139626. eCollection 2023.
8
Exploration of Target Spaces in the Human Genome for Protein and Peptide Drugs.
Genomics Proteomics Bioinformatics. 2022 Aug;20(4):780-794. doi: 10.1016/j.gpb.2021.10.007. Epub 2022 Mar 23.
9
Systems biology and machine learning approaches identify drug targets in diabetic nephropathy.
Sci Rep. 2021 Dec 6;11(1):23452. doi: 10.1038/s41598-021-02282-3.
10
Centrality of drug targets in protein networks.
BMC Bioinformatics. 2021 Oct 29;22(1):527. doi: 10.1186/s12859-021-04342-x.

本文引用的文献

1
Case histories, magic bullets and the state of drug discovery.
Nat Rev Drug Discov. 2006 Aug;5(8):635-40. doi: 10.1038/nrd2084. Epub 2006 Apr 13.
2
Progress and problems in the exploration of therapeutic targets.
Drug Discov Today. 2006 May;11(9-10):412-20. doi: 10.1016/j.drudis.2006.03.012.
3
Estimating the cost of new drug development: is it really 802 million dollars?
Health Aff (Millwood). 2006 Mar-Apr;25(2):420-8. doi: 10.1377/hlthaff.25.2.420.
4
DrugBank: a comprehensive resource for in silico drug discovery and exploration.
Nucleic Acids Res. 2006 Jan 1;34(Database issue):D668-72. doi: 10.1093/nar/gkj067.
5
Towards a proteome-scale map of the human protein-protein interaction network.
Nature. 2005 Oct 20;437(7062):1173-8. doi: 10.1038/nature04209. Epub 2005 Sep 28.
6
Why highly expressed proteins evolve slowly.
Proc Natl Acad Sci U S A. 2005 Oct 4;102(40):14338-43. doi: 10.1073/pnas.0504070102. Epub 2005 Sep 21.
7
A human protein-protein interaction network: a resource for annotating the proteome.
Cell. 2005 Sep 23;122(6):957-68. doi: 10.1016/j.cell.2005.08.029.
8
The target discovery process.
Chembiochem. 2005 Mar;6(3):468-79. doi: 10.1002/cbic.200400158.
9
The Biomolecular Interaction Network Database and related tools 2005 update.
Nucleic Acids Res. 2005 Jan 1;33(Database issue):D418-24. doi: 10.1093/nar/gki051.
10
GeneWays: a system for extracting, analyzing, visualizing, and integrating molecular pathway data.
J Biomed Inform. 2004 Feb;37(1):43-53. doi: 10.1016/j.jbi.2003.10.001.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验