Suppr超能文献

转运RNA-信使核糖核酸模拟机制驱动病毒内部核糖体进入位点的翻译起始。

tRNA-mRNA mimicry drives translation initiation from a viral IRES.

作者信息

Costantino David A, Pfingsten Jennifer S, Rambo Robert P, Kieft Jeffrey S

机构信息

Department of Biochemistry and Molecular Genetics, University of Colorado at Denver and Health Sciences Center, Mail Stop 8101, PO Box 6511, Aurora, Colorado 80045, USA.

出版信息

Nat Struct Mol Biol. 2008 Jan;15(1):57-64. doi: 10.1038/nsmb1351. Epub 2007 Dec 23.

Abstract

Internal ribosome entry site (IRES) RNAs initiate protein synthesis in eukaryotic cells by a noncanonical cap-independent mechanism. IRESes are critical for many pathogenic viruses, but efforts to understand their function are complicated by the diversity of IRES sequences as well as by limited high-resolution structural information. The intergenic region (IGR) IRESes of the Dicistroviridae viruses are powerful model systems to begin to understand IRES function. Here we present the crystal structure of a Dicistroviridae IGR IRES domain that interacts with the ribosome's decoding groove. We find that this RNA domain precisely mimics the transfer RNA anticodon-messenger RNA codon interaction, and its modeled orientation on the ribosome helps explain translocation without peptide bond formation. When combined with a previous structure, this work completes the first high-resolution description of an IRES RNA and provides insight into how RNAs can manipulate complex biological machines.

摘要

内部核糖体进入位点(IRES)RNA通过一种非经典的不依赖帽结构的机制在真核细胞中启动蛋白质合成。IRES对许多致病病毒至关重要,但由于IRES序列的多样性以及有限的高分辨率结构信息,了解其功能的努力变得复杂。双顺反子病毒科病毒的基因间区域(IGR)IRES是开始理解IRES功能的强大模型系统。在此,我们展示了一个与核糖体解码凹槽相互作用的双顺反子病毒科IGR IRES结构域的晶体结构。我们发现这个RNA结构域精确模拟了转运RNA反密码子-信使RNA密码子的相互作用,并且其在核糖体上的模拟方向有助于解释在没有肽键形成的情况下的转位。当与先前的结构相结合时,这项工作完成了对IRES RNA的首次高分辨率描述,并深入了解了RNA如何操纵复杂的生物机器。

相似文献

引用本文的文献

1
Information theory optimization of signals from small-angle scattering measurements.小角散射测量信号的信息论优化
Biophys J. 2025 Aug 5;124(15):2511-2522. doi: 10.1016/j.bpj.2025.06.031. Epub 2025 Jun 27.
9
tRNA renovatio: Rebirth through fragmentation.tRNA 修复:通过断裂实现重生。
Mol Cell. 2023 Nov 16;83(22):3953-3971. doi: 10.1016/j.molcel.2023.09.016. Epub 2023 Oct 5.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验