Locke Michael
Department of Biology, University of Western Ontario, London, Ontario, Canada N6A 5B7.
J Morphol. 2008 Apr;269(4):423-50. doi: 10.1002/jmor.10585.
Profiles with all orientations have been used to visualize the 3D structure of ivory from tusks of elephant, mammoth, walrus, hippopotamus, pig (bush, boar, and warthog), sperm whale, killer whale, and narwhal. Polished, forming, fractured, aged, and stained surfaces were prepared for microscopy using epi-illumination. Tusks have a minor peripheral component, the cementum, a soft derivative of the enamel layer, and a main core of dentine=ivory. The dentine is composed of a matrix of particles 5-20 microm in diameter in a ground substance containing dentinal tubules about 5 microm in diameter with a center to center spacing of 10-20 microm. Dentinal tubules may be straight (most) or curly (pigs). The main findings relate to the way that dentinal tubules align in sheets to form microlaminae in the length of the tusk. Microlaminae are sheets of laterally aligned dentinal tubules. They are axial but may be radial (most), angled to the forming face (pigs and hippopotamus canines), or radial but helical (narwhals). Within the microlaminae the dentinal tubules may be radial, angled to the axis (whales, walrus, and pigs), or may change their orientation from one microlamina to the next in helicoids (canines of hippopotamuses, incisors of proboscidea). In the nonbanded, featureless ivories from the hippopotamus incisors, the dentinal tubules form radial microlamina from which the arrangements in other ivories can be derived. In the canines of hippopotamuses and incisors of proboscidea, the dentinal tubule orientation changes incrementally from one microlamina to the next in a helicoid, a stack of dentinal tubules that change their orientation by 180 degrees anticlockwise. Dentinal tubules having different orientations are laid down concurrently, not layer by layer as in most examples of helicoidal architecture (e.g., insect cuticle). In proboscidean ivory, the microlaminae are radial, normal to the banding of growth layers marking the plane of deposition. They form radial segments with each 180 degrees turn in the orientation of their constituent dentinal tubules. Below the cementum they are almost complete 180 degrees helicoids, but nearer to the core they become narrower with the loss of radially oriented dentinal tubules. These truncated helicoidal patterns appear in longitudinal profile as VVVV feather patterns rather than intersection intersection intersection intersection, each V or intersection being the side view of a partial or complete helicoid. The Schreger pattern in proboscidean ivory consists of these helicoids divided tangentially into columns in the length of the tusk. Narwhals have the most abundant matrix particles with their radial/helical dentinal tubules having a twist opposite to that in the cementum.
各种取向的剖面已被用于可视化大象、猛犸象、海象、河马、猪(野猪、公猪和疣猪)、抹香鲸、虎鲸和独角鲸象牙的三维结构。使用落射照明法制备了用于显微镜观察的抛光、成型、断裂、老化和染色表面。象牙有一个较小的外周成分,即牙骨质,它是釉质层的一种软衍生物,以及一个主要的牙本质核心,即象牙质。牙本质由直径为5 - 20微米的颗粒基质组成,存在于一种含有直径约5微米的牙本质小管的基质中,这些小管的中心间距为10 - 20微米。牙本质小管可能是直的(大多数情况)或弯曲的(猪的)。主要发现涉及牙本质小管在象牙长度方向上排列成薄片以形成微层的方式。微层是横向排列的牙本质小管薄片。它们是轴向的,但可能是径向的(大多数情况)、与成型面成一定角度(猪和河马的犬齿)或径向但呈螺旋状(独角鲸)。在微层内,牙本质小管可能是径向的、与轴成一定角度(鲸鱼、海象和猪),或者可能在螺旋体中从一个微层到下一个微层改变其取向(河马的犬齿、长鼻类动物的门齿)。在河马门齿无条纹、无特征的象牙中,牙本质小管形成径向微层,其他象牙的排列方式可由此推导得出。在河马的犬齿和长鼻类动物的门齿中,牙本质小管的取向在螺旋体中从一个微层到下一个微层逐渐变化,螺旋体是一堆牙本质小管,其取向逆时针旋转180度。具有不同取向的牙本质小管是同时形成的,不像大多数螺旋状结构(如昆虫角质层)那样逐层形成。在长鼻类动物的象牙中,微层是径向的,垂直于标记沉积平面的生长层条纹。它们形成径向段,其组成的牙本质小管的取向每旋转180度。在牙骨质下方,它们几乎是完整的180度螺旋体,但靠近核心时,随着径向取向的牙本质小管的减少,它们会变窄。这些截断的螺旋状图案在纵向剖面上呈现为VVVV羽毛图案,而不是交叉交叉交叉交叉,每个V或交叉是部分或完整螺旋体的侧视图。长鼻类动物象牙中的施雷格图案由这些螺旋体在象牙长度方向上切向划分为柱体组成。独角鲸的基质颗粒最丰富,其径向/螺旋状牙本质小管的扭曲方向与牙骨质中的相反。