Velarde Nathalie, Gunsalus Kristin C, Piano Fabio
New York University, Department of Biology and Center for Comparative Functional Genomics, 100 Washington Square East, New York, NY 10003, USA.
BMC Dev Biol. 2007 Dec 24;7:142. doi: 10.1186/1471-213X-7-142.
The actin cytoskeleton plays critical roles in early development in Caenorhabditis elegans. To further understand the complex roles of actin in early embryogenesis we use RNAi and in vivo imaging of filamentous actin (F-actin) dynamics.
Using RNAi, we found processes that are differentially sensitive to levels of actin during early embryogenesis. Mild actin depletion shows defects in cortical ruffling, pseudocleavage, and establishment of polarity, while more severe depletion shows defects in polar body extrusion, cytokinesis, chromosome segregation, and eventually, egg production. These defects indicate that actin is required for proper oocyte development, fertilization, and a wide range of important events during early embryogenesis, including proper chromosome segregation. In vivo visualization of the cortical actin cytoskeleton shows dynamics that parallel but are distinct from the previously described myosin dynamics. Two distinct types of actin organization are observed at the cortex. During asymmetric polarization to the anterior, or the establishment phase (Phase I), actin forms a meshwork of microfilaments and focal accumulations throughout the cortex, while during the anterior maintenance phase (Phase II) it undergoes a morphological transition to asymmetrically localized puncta. The proper asymmetric redistribution is dependent on the PAR proteins, while both asymmetric redistribution and morphological transitions are dependent upon PFN-1 and NMY-2. Just before cytokinesis, actin disappears from most of the cortex and is only found around the presumptive cytokinetic furrow. Finally, we describe dynamic actin-enriched comets in the early embryo.
During early C. elegans embryogenesis actin plays more roles and its organization is more dynamic than previously described. Morphological transitions of F-actin, from meshwork to puncta, as well as asymmetric redistribution, are regulated by the PAR proteins. Results from this study indicate new insights into the cellular and developmental roles of the actin cytoskeleton.
肌动蛋白细胞骨架在秀丽隐杆线虫的早期发育中起着关键作用。为了进一步了解肌动蛋白在早期胚胎发生中的复杂作用,我们使用RNA干扰(RNAi)以及丝状肌动蛋白(F-肌动蛋白)动力学的体内成像技术。
通过RNAi,我们发现在早期胚胎发生过程中,不同过程对肌动蛋白水平的敏感性存在差异。轻度的肌动蛋白缺失表现为皮质褶皱、假分裂和极性建立方面的缺陷,而更严重的缺失则表现为极体排出、胞质分裂、染色体分离以及最终的产卵缺陷。这些缺陷表明,肌动蛋白对于卵母细胞的正常发育、受精以及早期胚胎发生过程中的一系列重要事件(包括正确的染色体分离)是必需的。皮质肌动蛋白细胞骨架的体内可视化显示出与先前描述的肌球蛋白动力学平行但又不同的动态变化。在皮质处观察到两种不同类型的肌动蛋白组织形式。在向前端的不对称极化过程中,即建立阶段(阶段I),肌动蛋白在整个皮质形成微丝网络和局灶性聚集,而在前端维持阶段(阶段II),它经历形态转变,形成不对称定位的点状结构。正确的不对称重新分布依赖于PAR蛋白,而不对称重新分布和形态转变都依赖于PFN-1和NMY-2。就在胞质分裂之前,肌动蛋白从大部分皮质消失,仅在假定的胞质分裂沟周围发现。最后,我们描述了早期胚胎中富含肌动蛋白的动态彗星状结构。
在秀丽隐杆线虫早期胚胎发生过程中,肌动蛋白发挥的作用比先前描述的更多,其组织形式也更具动态性。F-肌动蛋白从网络状到点状的形态转变以及不对称重新分布受PAR蛋白调控。本研究结果为肌动蛋白细胞骨架的细胞和发育作用提供了新的见解。