Suppr超能文献

Proteomic analysis of ampicillin-resistant oral Fusobacterium nucleatum.

作者信息

Al-Haroni M, Skaug N, Bakken V, Cash P

机构信息

Department of Oral Sciences - Oral Microbiology, Faculty of Dentistry, and Centre of International Health, University of Bergen, Bergen, Norway.

出版信息

Oral Microbiol Immunol. 2008 Feb;23(1):36-42. doi: 10.1111/j.1399-302X.2007.00387.x.

Abstract

INTRODUCTION

Fusobacterium nucleatum represents one of the predominant anaerobic species in the oral microbiota. Penicillin-resistant F. nucleatum have been isolated from intra- and extraoral infections. This study aimed to assess ampicillin resistance in F. nucleatum by investigating the synthesis of resistance-associated proteins.

METHODS

Ampicillin-resistant and ampicillin-susceptible F. nucleatum isolates were obtained from 22 dental plaque samples. Two-dimensional gel electrophoresis and mass spectrometry were used to investigate bacterial protein synthesis. Proteins exhibiting statistically significant quantitative changes between sensitive and resistant isolates were identified using peptide mass mapping and matrix-assisted laser desorption/ionization - time of flight/time of flight (MALDI-TOF/TOF) mass spectrometry.

RESULTS

Twenty-three F. nucleatum isolates were recovered from plaque samples and their ampicillin minimum inhibitory concentrations ranged between 0.125 microg/ml and 256 microg/ml. Analysis of the bacterial cellular proteins by two-dimensional gel electrophoresis resolved 154-246 distinct protein spots (mean 212, n = 9). Between 32% and 83% of the protein spots were common for the F. nucleatum isolates. Comparisons of the protein profiles of sensitive and resistant isolates revealed the presence of a 29 kDa protein and significant increases in the synthesis of two proteins at 37 and 46 kDa in the ampicillin-resistant F. nucleatum isolates. These proteins were identified as a class D beta-lactamase, ATP-binding cassette (ABC) transporter ATP-binding protein and enolase, respectively.

CONCLUSION

Synthesis of a class D beta-lactamase by ampicillin-resistant F. nucleatum isolates could complicate antimicrobial treatment because these enzymes might confer resistance to many classes of beta-lactam antibiotics. The differences observed in protein synthesis between ampicillin-resistant and ampicillin-susceptible F. nucleatum may contribute to the antibiotic resistance and virulence of these bacteria.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验