Suppr超能文献

对含有埋藏极性或可电离基团的工程蛋白内部空腔水合作用的晶体学研究。

Crystallographic study of hydration of an internal cavity in engineered proteins with buried polar or ionizable groups.

作者信息

Schlessman Jamie L, Abe Colby, Gittis Apostolos, Karp Daniel A, Dolan Michael A, García-Moreno E Bertrand

机构信息

Department of Biophysics, The Johns Hopkins University, Baltimore, Maryland 21218, USA.

出版信息

Biophys J. 2008 Apr 15;94(8):3208-16. doi: 10.1529/biophysj.107.122473. Epub 2008 Jan 4.

Abstract

Although internal water molecules are essential for the structure and function of many proteins, the structural and physical factors that govern internal hydration are poorly understood. We have examined the molecular determinants of internal hydration systematically, by solving the crystal structures of variants of staphylococcal nuclease with Gln-66, Asn-66, and Tyr-66 at cryo (100 K) and room (298 K) temperatures, and comparing them with existing cryo and room temperature structures of variants with Glu-66, Asp-66, Lys-66, Glu-92 or Lys-92 obtained under conditions of pH where the internal ionizable groups are in the neutral state. At cryogenic temperatures the polar moieties of all these internal side chains are hydrated except in the cases of Lys-66 and Lys-92. At room temperature the internal water molecules were observed only in variants with Glu-66 and Tyr-66; water molecules in the other variants are probably present but they are disordered and therefore undetectable crystallographically. Each internal water molecule establishes between 3 and 5 hydrogen bonds with the protein or with other internal water molecules. The strength of interactions between internal polar side chains and water molecules seems to decrease from carboxylic acids to amides to amines. Low temperature, low cavity volume, and the presence of oxygen atoms in the cavity increase the positional stability of internal water molecules. This set of structures and the physical insight they contribute into internal hydration will be useful for the development and benchmarking of computational methods for artificial hydration of pockets, cavities, and active sites in proteins.

摘要

尽管内部水分子对许多蛋白质的结构和功能至关重要,但控制内部水合作用的结构和物理因素却知之甚少。我们通过解析在低温(100K)和室温(298K)下具有Gln-66、Asn-66和Tyr-66的葡萄球菌核酸酶变体的晶体结构,并将它们与在内部可电离基团处于中性状态的pH条件下获得的具有Glu-66、Asp-66、Lys-66、Glu-92或Lys-92的变体的现有低温和室温结构进行比较,系统地研究了内部水合作用的分子决定因素。在低温下,除了Lys-66和Lys-92的情况外,所有这些内部侧链的极性部分都被水合了。在室温下,仅在具有Glu-66和Tyr-66的变体中观察到内部水分子;其他变体中的水分子可能存在,但它们是无序的,因此在晶体学上无法检测到。每个内部水分子与蛋白质或其他内部水分子形成3至5个氢键。内部极性侧链与水分子之间的相互作用强度似乎从羧酸到酰胺再到胺逐渐降低。低温、低腔体积以及腔中氧原子的存在增加了内部水分子的位置稳定性。这组结构以及它们对内部水合作用的物理见解将有助于开发和基准测试用于蛋白质口袋、腔和活性位点人工水合的计算方法。

相似文献

8
Arginine residues at internal positions in a protein are always charged.蛋白质内部位置的精氨酸残基总是带电荷的。
Proc Natl Acad Sci U S A. 2011 Nov 22;108(47):18954-9. doi: 10.1073/pnas.1104808108. Epub 2011 Nov 11.

引用本文的文献

6
Water in protein hydration and ligand recognition.水在蛋白质水合和配体识别中的作用。
J Mol Recognit. 2019 Dec;32(12):e2810. doi: 10.1002/jmr.2810. Epub 2019 Aug 27.
8
Lessons from pressure denaturation of proteins.从蛋白质压力变性中得到的启示。
J R Soc Interface. 2018 Oct 3;15(147):20180244. doi: 10.1098/rsif.2018.0244.
10
Arginine: Its pKa value revisited.精氨酸:重新审视其pKa值。
Protein Sci. 2015 May;24(5):752-61. doi: 10.1002/pro.2647. Epub 2015 Mar 22.

本文引用的文献

9
Water clusters in nonpolar cavities.非极性腔中的水簇。
Proc Natl Acad Sci U S A. 2004 Dec 7;101(49):17002-5. doi: 10.1073/pnas.0407968101. Epub 2004 Nov 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验