Suppr超能文献

我们如何在进化博弈中对选择性中性密度依赖进行建模?

How can we model selectively neutral density dependence in evolutionary games.

作者信息

Argasinski Krzysztof, Kozłowski Jan

机构信息

Jagiellonian University, Institute of Environmental Sciences, Gronostajowa 7, 30-387 Kraków, Poland.

出版信息

Theor Popul Biol. 2008 Mar;73(2):250-6. doi: 10.1016/j.tpb.2007.11.006. Epub 2007 Nov 29.

Abstract

The problem of density dependence appears in all approaches to the modelling of population dynamics. It is pertinent to classic models (i.e., Lotka-Volterra's), and also population genetics and game theoretical models related to the replicator dynamics. There is no density dependence in the classic formulation of replicator dynamics, which means that population size may grow to infinity. Therefore the question arises: How is unlimited population growth suppressed in frequency-dependent models? Two categories of solutions can be found in the literature. In the first, replicator dynamics is independent of background fitness. In the second type of solution, a multiplicative suppression coefficient is used, as in a logistic equation. Both approaches have disadvantages. The first one is incompatible with the methods of life history theory and basic probabilistic intuitions. The logistic type of suppression of per capita growth rate stops trajectories of selection when population size reaches the maximal value (carrying capacity); hence this method does not satisfy selective neutrality. To overcome these difficulties, we must explicitly consider turn-over of individuals dependent on mortality rate. This new approach leads to two interesting predictions. First, the equilibrium value of population size is lower than carrying capacity and depends on the mortality rate. Second, although the phase portrait of selection trajectories is the same as in density-independent replicator dynamics, pace of selection slows down when population size approaches equilibrium, and then remains constant and dependent on the rate of turn-over of individuals.

摘要

密度依赖问题出现在所有种群动态建模方法中。它与经典模型(即洛特卡 - 沃尔泰拉模型)相关,也与种群遗传学以及与复制者动态相关的博弈论模型有关。在复制者动态的经典表述中不存在密度依赖,这意味着种群规模可能增长到无穷大。因此出现了这样一个问题:在频率依赖模型中,无限的种群增长是如何被抑制的?在文献中可以找到两类解决方案。第一类中,复制者动态与背景适应度无关。在第二类解决方案中,使用了一个乘法抑制系数,就像在逻辑斯谛方程中那样。这两种方法都有缺点。第一种与生活史理论方法和基本概率直觉不兼容。逻辑斯谛型的人均增长率抑制在种群规模达到最大值(承载能力)时会停止选择轨迹;因此这种方法不满足选择中性。为了克服这些困难,我们必须明确考虑依赖于死亡率的个体更替。这种新方法产生了两个有趣的预测。第一,种群规模的平衡值低于承载能力,并且取决于死亡率。第二,虽然选择轨迹的相图与密度独立的复制者动态中的相同,但当种群规模接近平衡时,选择速度会减慢,然后保持恒定并取决于个体的更替率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验