文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

全氟碳纳米颗粒在分子成像和靶向治疗中的临床应用。

Clinical applications of perfluorocarbon nanoparticles for molecular imaging and targeted therapeutics.

作者信息

Tran Trung D, Caruthers Shelton D, Hughes Michael, Marsh John N, Cyrus Tillmann, Winter Patrick M, Neubauer Anne M, Wickline Samuel A, Lanza Gregory M

机构信息

Division of Cardiology, Washington University Medical School, 660 South Euclid Blvd, St Louis, Missouri 63110, USA.

出版信息

Int J Nanomedicine. 2007;2(4):515-26.


DOI:
PMID:18203420
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC2676820/
Abstract

Molecular imaging is a novel tool that has allowed non-invasive diagnostic imaging to transition from gross anatomical description to identification of specific tissue epitopes and observation of biological processes at the cellular level. This technique has been confined to the field of nuclear imaging; however, recent advances in nanotechnology have extended this research to include ultrasound (US) and magnetic resonance (MR) imaging. The exploitation of nanotechnology for MR and US molecular imaging has generated several candidate contrast agents. One multimodality platform, targeted perfluorocarbon (PFC) nanoparticles, is useful for noninvasive detection with US and MR, targeted drug delivery, and quantification.

摘要

分子成像是一种新型工具,它使非侵入性诊断成像从大体解剖描述转变为识别特定组织表位并在细胞水平观察生物过程。这项技术一直局限于核成像领域;然而,纳米技术的最新进展已将该研究扩展到包括超声(US)和磁共振(MR)成像。利用纳米技术进行MR和US分子成像已产生了几种候选造影剂。一种多模态平台,即靶向全氟碳(PFC)纳米颗粒,可用于US和MR的非侵入性检测、靶向药物递送和定量分析。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6935/2676820/9f0299613a7d/ijn-2-515f10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6935/2676820/bceeb040cfa1/ijn-2-515f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6935/2676820/daf5cb3f4d9c/ijn-2-515f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6935/2676820/e2861866bd75/ijn-2-515f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6935/2676820/c7820aac528e/ijn-2-515f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6935/2676820/60bd5e6c2d2f/ijn-2-515f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6935/2676820/f7f6d4ef375a/ijn-2-515f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6935/2676820/0f54dc83f45a/ijn-2-515f7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6935/2676820/5194920c05ad/ijn-2-515f8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6935/2676820/a480215bbc80/ijn-2-515f9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6935/2676820/9f0299613a7d/ijn-2-515f10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6935/2676820/bceeb040cfa1/ijn-2-515f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6935/2676820/daf5cb3f4d9c/ijn-2-515f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6935/2676820/e2861866bd75/ijn-2-515f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6935/2676820/c7820aac528e/ijn-2-515f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6935/2676820/60bd5e6c2d2f/ijn-2-515f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6935/2676820/f7f6d4ef375a/ijn-2-515f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6935/2676820/0f54dc83f45a/ijn-2-515f7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6935/2676820/5194920c05ad/ijn-2-515f8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6935/2676820/a480215bbc80/ijn-2-515f9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6935/2676820/9f0299613a7d/ijn-2-515f10.jpg

相似文献

[1]
Clinical applications of perfluorocarbon nanoparticles for molecular imaging and targeted therapeutics.

Int J Nanomedicine. 2007

[2]
Perfluorocarbon nanoemulsions for quantitative molecular imaging and targeted therapeutics.

Ann Biomed Eng. 2009-10

[3]
Emerging nanomedicine opportunities with perfluorocarbon nanoparticles.

Expert Rev Med Devices. 2007-3

[4]
Nanomedicine: perspective and promises with ligand-directed molecular imaging.

Eur J Radiol. 2009-5

[5]
Anti-angiogenic perfluorocarbon nanoparticles for diagnosis and treatment of atherosclerosis.

Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2009

[6]
Nanoplatforms for targeted molecular imaging in living subjects.

Small. 2007-11

[7]
Nanoparticles for multiplex diagnostics and imaging.

Nanomedicine (Lond). 2006-12

[8]
Nanomedicine opportunities for cardiovascular disease with perfluorocarbon nanoparticles.

Nanomedicine (Lond). 2006-10

[9]
Nanomedicine: reshaping clinical practice.

J Intern Med. 2010-1

[10]
Nanomedicine: how it could reshape clinical practice.

Nanomedicine (Lond). 2007-8

引用本文的文献

[1]
Safety Evaluations of Rapamycin Perfluorocarbon Nanoparticles in Ovarian Tumor-Bearing Mice.

Nanomaterials (Basel). 2024-10-31

[2]
Non-Ionic Fluorosurfactants for Droplet-Based in vivo Applications.

Angew Chem Int Ed Engl. 2024-12-20

[3]
Programmable ultrasound imaging guided theranostic nanodroplet destruction for precision therapy of breast cancer.

Ultrason Sonochem. 2024-5

[4]
A stable, highly concentrated fluorous nanoemulsion formulation for in vivo cancer imaging via F-MRI.

NMR Biomed. 2024-5

[5]
Synthesis of Fluorous Ferrofluids and Effects of the Nanoparticle Coatings on Field- and Temperature-Dependent Magnetizations.

Chem Mater. 2023-9-29

[6]
Perfluorocarbons: A perspective of theranostic applications and challenges.

Front Bioeng Biotechnol. 2023-8-3

[7]
Single low-dose INC280-loaded theranostic nanoparticles achieve multirooted delivery for MET-targeted primary and liver metastatic NSCLC.

Mol Cancer. 2022-12-1

[8]
Enhanced US/CT/MR imaging of integrin αβ for liver fibrosis staging in rat.

Front Chem. 2022-10-3

[9]
Assessment of Nanoparticle-Mediated Tumor Oxygen Modulation by Photoacoustic Imaging.

Biosensors (Basel). 2022-5-13

[10]
Systematic Study of Perfluorocarbon Nanoemulsions Stabilized by Polymer Amphiphiles.

ACS Appl Mater Interfaces. 2020-9-2

本文引用的文献

[1]
In vitro demonstration using 19F magnetic resonance to augment molecular imaging with paramagnetic perfluorocarbon nanoparticles at 1.5 Tesla.

Invest Radiol. 2006-3

[2]
Acoustic characterization in whole blood and plasma of site-targeted nanoparticle ultrasound contrast agent for molecular imaging.

J Acoust Soc Am. 2005-2

[3]
Molecular MR imaging of melanoma angiogenesis with alphanubeta3-targeted paramagnetic nanoparticles.

Magn Reson Med. 2005-3

[4]
Magnetic resonance molecular imaging with nanoparticles.

J Nucl Cardiol. 2004

[5]
Quantitative "magnetic resonance immunohistochemistry" with ligand-targeted (19)F nanoparticles.

Magn Reson Med. 2004-12

[6]
Molecular targeting of lymph nodes with L-selectin ligand-specific US contrast agent: a feasibility study in mice and dogs.

Radiology. 2004-6

[7]
Detection of individual microbubbles of ultrasound contrast agents: imaging of free-floating and targeted bubbles.

Invest Radiol. 2004-3

[8]
Targeted nanoparticles for quantitative imaging of sparse molecular epitopes with MRI.

Magn Reson Med. 2004-3

[9]
Molecular imaging of angiogenesis in early-stage atherosclerosis with alpha(v)beta3-integrin-targeted nanoparticles.

Circulation. 2003-11-4

[10]
From vulnerable plaque to vulnerable patient: a call for new definitions and risk assessment strategies: Part I.

Circulation. 2003-10-7

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索