Suppr超能文献

将成功概率重新思考为贝叶斯效用。

Rethinking Probability of Success as Bayes Utility.

作者信息

De Santis Fulvio, Gubbiotti Stefania, Mariani Francesco

机构信息

Department of Statistical Sciences, Sapienza University of Rome, Rome, Italy.

出版信息

Biom J. 2025 Aug;67(4):e70067. doi: 10.1002/bimj.70067.

Abstract

In the hybrid frequentist-Bayesian approach, the probability of success (PoS) of a trial is the expected value of the traditional power function of a test with respect to a design prior assigned to the parameter under scrutiny. However, this definition is not univocal and some of the proposals do not lack of potential drawbacks. These problems are related to the fact that such definitions are all based on the probability of rejecting the null hypothesis rather than on the probability of choosing the correct hypothesis, be it the null or the alternative. In this article, we propose a unifying, decision-theoretic approach that yields a new definition of PoS as the expected utility of the trial (u-PoS), that is, as the expected probability of making the correct choice between the two hypotheses. This proposal shows a conceptual advantage over previous definitions of PoS; moreover, it produces smaller optimal sample sizes whenever the design prior assigns positive probability to the null hypothesis.

摘要

在混合频率主义-贝叶斯方法中,试验的成功概率(PoS)是针对分配给受审查参数的设计先验,检验的传统功效函数的期望值。然而,这个定义并非唯一的,并且一些提议存在潜在缺陷。这些问题与这样一个事实有关,即这些定义都基于拒绝原假设的概率,而非基于选择正确假设(无论是原假设还是备择假设)的概率。在本文中,我们提出一种统一的决策理论方法,该方法产生了PoS的新定义,即试验的期望效用(u-PoS),也就是在两个假设之间做出正确选择的期望概率。与PoS的先前定义相比,这个提议显示出概念上的优势;此外,当设计先验给原假设赋予正概率时,它会产生更小的最优样本量。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验