Pierce Brian, Weng Zhiping
Bioinformatics Program, Boston University, Boston, Massachusetts 02215, USA.
Proteins. 2008 Jul;72(1):270-9. doi: 10.1002/prot.21920.
To determine the structures of protein-protein interactions, protein docking is a valuable tool that complements experimental methods to characterize protein complexes. Although protein docking can often produce a near-native solution within a set of global docking predictions, there are sometimes predictions that require refinement to elucidate correct contacts and conformation. Previously, we developed the ZRANK algorithm to rerank initial docking predictions from ZDOCK, a docking program developed by our lab. In this study, we have applied the ZRANK algorithm toward refinement of protein docking models in conjunction with the protein docking program RosettaDock. This was performed by reranking global docking predictions from ZDOCK, performing local side chain and rigid-body refinement using RosettaDock, and selecting the refined model based on ZRANK score. For comparison, we examined using RosettaDock score instead of ZRANK score, and a larger perturbation size for the RosettaDock search, and determined that the larger RosettaDock perturbation size with ZRANK scoring was optimal. This method was validated on a protein-protein docking benchmark. For refining docking benchmark predictions from the newest ZDOCK version, this led to improved structures of top-ranked hits in 20 of 27 cases, and an increase from 23 to 27 cases with hits in the top 20 predictions. Finally, we optimized the ZRANK energy function using refined models, which provides a significant improvement over the original ZRANK energy function. Using this optimized function and the refinement protocol, the numbers of cases with hits ranked at number one increased from 12 to 19 and from 7 to 15 for two different ZDOCK versions. This shows the effective combination of independently developed docking protocols (ZDOCK/ZRANK, and RosettaDock), indicating that using diverse search and scoring functions can improve protein docking results.
为了确定蛋白质 - 蛋白质相互作用的结构,蛋白质对接是一种有价值的工具,可补充用于表征蛋白质复合物的实验方法。尽管蛋白质对接通常可以在一组全局对接预测中产生接近天然的解决方案,但有时仍需要对预测进行优化以阐明正确的接触和构象。此前,我们开发了ZRANK算法,用于对我们实验室开发的对接程序ZDOCK的初始对接预测进行重新排序。在本研究中,我们将ZRANK算法应用于结合蛋白质对接程序RosettaDock对蛋白质对接模型进行优化。具体做法是对ZDOCK的全局对接预测进行重新排序,使用RosettaDock进行局部侧链和刚体优化,并根据ZRANK分数选择优化后的模型。为了进行比较,我们研究了使用RosettaDock分数而非ZRANK分数,以及对RosettaDock搜索采用更大的扰动大小,并确定采用ZRANK评分且扰动大小更大的RosettaDock是最优的。该方法在蛋白质 - 蛋白质对接基准上得到了验证。对于优化最新版ZDOCK的对接基准预测,这使得27个案例中的20个案例中排名靠前的命中结构得到了改善,并且命中前20名预测的案例数量从23个增加到了27个。最后,我们使用优化后的模型对ZRANK能量函数进行了优化,这比原始的ZRANK能量函数有了显著改进。使用这个优化后的函数和优化协议,对于两个不同的ZDOCK版本,排名第一的命中案例数量分别从12个增加到19个以及从7个增加到15个。这表明独立开发的对接协议(ZDOCK/ZRANK和RosettaDock)的有效结合,表明使用不同的搜索和评分函数可以改善蛋白质对接结果。