Dept. of Stat., Washington Univ., Seattle, WA.
IEEE Trans Med Imaging. 1993;12(3):399-412. doi: 10.1109/42.241867.
Two methodologies for fitting radiotracer models on a pixel-wise basis to PET data are considered. The first method does parameter optimization for each pixel considered as a separate region of interest. The second method also does pixel-wise analysis but incorporates an additive mixture representation to account for heterogeneity effects induced by instrumental and biological blurring. Several numerical and statistical techniques including cluster analysis, constrained nonlinear optimization, subsampling, and spatial filtering are used to implement the methods. A computer simulation experiment, modeling a standard F-18 deoxyglucose (FDG) imaging protocol using the UW-PET scanner, is conducted to evaluate the statistical performance of the parametric images obtained by the two methods. The results obtained by mixture analysis are found to have substantially improved mean square error performance characteristics. The total computation time for mixture analysis is on the order of 0.7 s/pixel on a 16 MIPS workstation. This results in a total computation time of about 1 h per slice for a typical FDG brain study.
考虑了两种将放射性示踪剂模型拟合到 PET 数据上的像素级方法。第一种方法对每个像素进行参数优化,将其视为单独的感兴趣区域。第二种方法也进行像素级分析,但采用附加的混合表示来解释仪器和生物学模糊引起的异质性效应。使用了几种数值和统计技术,包括聚类分析、约束非线性优化、子采样和空间滤波,来实现这些方法。进行了一项计算机模拟实验,使用 UW-PET 扫描仪对标准 F-18 脱氧葡萄糖 (FDG) 成像协议进行建模,以评估两种方法获得的参数图像的统计性能。混合分析的结果发现具有显著改进的均方误差性能特征。混合分析的总计算时间在 16 MIPS 工作站上的每个像素约为 0.7 秒。这导致典型的 FDG 脑研究中每个切片的总计算时间约为 1 小时。