Suppr超能文献

脂类-蛋白质相互作用中疏水匹配的能量学

Energetics of hydrophobic matching in lipid-protein interactions.

作者信息

Marsh Derek

机构信息

Max-Planck-Institut für biophysikalische Chemie, Abt. Spektroskopie, 37077 Göttingen, Germany.

出版信息

Biophys J. 2008 May 15;94(10):3996-4013. doi: 10.1529/biophysj.107.121475. Epub 2008 Jan 30.

Abstract

Lipid chain length modulates the activity of transmembrane proteins by mismatch between the hydrophobic span of the protein and that of the lipid membrane. Relative binding affinities of lipids with different chain lengths are used to estimate the excess free energy of lipid-protein interaction that arises from hydrophobic mismatch. For a wide range of integral proteins and peptides, the energy cost is much less than the elastic penalty of fully stretching or compressing the lipid chains to achieve complete hydrophobic matching. The chain length dependences of the free energies of lipid association are described by a model that combines elastic chain extension with a free energy term that depends linearly on the extent of residual mismatch. The excess free energy densities involved lie in the region of 0.5-2.0 k(B)T x nm(-2). Values of this size could arise from exposure of hydrophobic groups to polar portions of the lipid or protein, but not directly to water, or alternatively from changes in tilt of the transmembrane helices that are energetically comparable to those activating mechanosensitive channels. The influence of hydrophobic mismatch on dimerization of transmembrane helices and their transfer between lipid vesicles, and on shifts in chain-melting transitions of lipid bilayers by incorporated proteins, is analyzed by using the same thermodynamic model. Segmental order parameters confirm that elastic lipid chain distortions are insufficient to compensate fully for the mismatch, but the dependence on chain length with tryptophan-anchored peptides requires that the free energy density of hydrophobic mismatch should increase with increasing extent of mismatch.

摘要

脂链长度通过蛋白质的疏水跨度与脂质膜的疏水跨度之间的不匹配来调节跨膜蛋白的活性。利用不同链长脂质的相对结合亲和力来估计由疏水不匹配引起的脂质 - 蛋白质相互作用的过剩自由能。对于广泛的整合蛋白和肽,能量成本远低于完全拉伸或压缩脂质链以实现完全疏水匹配的弹性惩罚。脂质缔合自由能的链长依赖性由一个模型描述,该模型将弹性链延伸与一个线性依赖于残余不匹配程度的自由能项相结合。所涉及的过剩自由能密度在0.5 - 2.0 k(B)T×nm(-2)范围内。这种大小的值可能源于疏水基团暴露于脂质或蛋白质的极性部分,而非直接暴露于水,或者源于跨膜螺旋倾斜度的变化,其能量与激活机械敏感通道的变化相当。通过使用相同的热力学模型,分析了疏水不匹配对跨膜螺旋二聚化及其在脂质囊泡之间转移的影响,以及对掺入蛋白质引起的脂质双层链熔化转变位移的影响。段序参数证实,弹性脂质链畸变不足以完全补偿不匹配,但色氨酸锚定肽对链长的依赖性要求疏水不匹配的自由能密度应随着不匹配程度的增加而增加。

相似文献

1
Energetics of hydrophobic matching in lipid-protein interactions.
Biophys J. 2008 May 15;94(10):3996-4013. doi: 10.1529/biophysj.107.121475. Epub 2008 Jan 30.
3
The determinants of hydrophobic mismatch response for transmembrane helices.
Biochim Biophys Acta. 2013 Feb;1828(2):851-63. doi: 10.1016/j.bbamem.2012.09.012. Epub 2012 Sep 17.
5
Transmembrane helices of membrane proteins may flex to satisfy hydrophobic mismatch.
Biochim Biophys Acta. 2007 Mar;1768(3):530-7. doi: 10.1016/j.bbamem.2006.11.018. Epub 2006 Dec 15.
7
A molecular model for lipid-protein interaction in membranes: the role of hydrophobic mismatch.
Biophys J. 1993 Nov;65(5):1795-809. doi: 10.1016/S0006-3495(93)81249-9.
9
Self-association of transmembrane alpha-helices in model membranes: importance of helix orientation and role of hydrophobic mismatch.
J Biol Chem. 2005 Nov 25;280(47):39324-31. doi: 10.1074/jbc.M502810200. Epub 2005 Sep 15.
10
Energetics of the Transmembrane Peptide Sorting by Hydrophobic Mismatch.
J Phys Chem Lett. 2024 May 23;15(20):5344-5349. doi: 10.1021/acs.jpclett.4c00651. Epub 2024 May 13.

引用本文的文献

1
Programmable Lipid Bilayer Tension-Control Apparatus for Quantitative Mechanobiology.
ACS Nano. 2024 Nov 5;18(44):30561-30573. doi: 10.1021/acsnano.4c09017. Epub 2024 Oct 22.
2
Fluorescence evidence of annexin A6 translocation across membrane in model matrix vesicles during apatite formation.
J Extracell Biol. 2022 Apr 20;1(4):e38. doi: 10.1002/jex2.38. eCollection 2022 Apr.
3
Energetics of the Transmembrane Peptide Sorting by Hydrophobic Mismatch.
J Phys Chem Lett. 2024 May 23;15(20):5344-5349. doi: 10.1021/acs.jpclett.4c00651. Epub 2024 May 13.
4
Amphiphilic Membrane Environments Regulate Enzymatic Behaviors of Outer Membrane Protease.
ACS Bio Med Chem Au. 2021 Dec 14;2(1):73-83. doi: 10.1021/acsbiomedchemau.1c00027. eCollection 2022 Feb 16.
5
Screening for bilayer-active and likely cytotoxic molecules reveals bilayer-mediated regulation of cell function.
J Gen Physiol. 2023 Apr 3;155(4). doi: 10.1085/jgp.202213247. Epub 2023 Feb 10.
6
Length matters: Functional flip of the short TatA transmembrane helix.
Biophys J. 2023 Jun 6;122(11):2125-2146. doi: 10.1016/j.bpj.2022.12.016. Epub 2022 Dec 15.
7
Fluorescence microscopy imaging of a neurotransmitter receptor and its cell membrane lipid milieu.
Front Mol Biosci. 2022 Nov 28;9:1014659. doi: 10.3389/fmolb.2022.1014659. eCollection 2022.
8
Membranolytic Mechanism of Amphiphilic Antimicrobial β-Stranded [KL] Peptides.
Biomedicines. 2022 Aug 24;10(9):2071. doi: 10.3390/biomedicines10092071.
9
Regulation of Gramicidin Channel Function Solely by Changes in Lipid Intrinsic Curvature.
Front Physiol. 2022 Mar 8;13:836789. doi: 10.3389/fphys.2022.836789. eCollection 2022.
10
Unusual mode of dimerization of retinitis pigmentosa-associated F220C rhodopsin.
Sci Rep. 2021 May 18;11(1):10536. doi: 10.1038/s41598-021-90039-3.

本文引用的文献

1
Crystal structure of the sodium-potassium pump.
Nature. 2007 Dec 13;450(7172):1043-9. doi: 10.1038/nature06419.
2
Lateral pressure profile, spontaneous curvature frustration, and the incorporation and conformation of proteins in membranes.
Biophys J. 2007 Dec 1;93(11):3884-99. doi: 10.1529/biophysj.107.107938. Epub 2007 Aug 17.
3
Different effects of lipid chain length on the two sides of a membrane and the lipid annulus of MscL.
Biophys J. 2007 Jul 1;93(1):113-22. doi: 10.1529/biophysj.107.105130. Epub 2007 Apr 6.
5
Elastic curvature constants of lipid monolayers and bilayers.
Chem Phys Lipids. 2006 Nov-Dec;144(2):146-59. doi: 10.1016/j.chemphyslip.2006.08.004. Epub 2006 Sep 6.
6
Peptides in lipid bilayers: the power of simple models.
Curr Opin Struct Biol. 2006 Aug;16(4):473-9. doi: 10.1016/j.sbi.2006.06.007. Epub 2006 Jul 7.
7
Positioning of proteins in membranes: a computational approach.
Protein Sci. 2006 Jun;15(6):1318-33. doi: 10.1110/ps.062126106.
8
Closer look at structure of fully hydrated fluid phase DPPC bilayers.
Biophys J. 2006 Jun 1;90(11):L83-5. doi: 10.1529/biophysj.106.086017. Epub 2006 Apr 14.
9
Structure of fully hydrated fluid phase lipid bilayers with monounsaturated chains.
J Membr Biol. 2005 Dec;208(3):193-202. doi: 10.1007/s00232-005-7006-8. Epub 2006 Apr 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验