Suppr超能文献

小团体与复制-分化网络增长。

Cliques and duplication-divergence network growth.

作者信息

Ispolatov I, Krapivsky Pl, Mazo I, Yuryev A

机构信息

Ariadne Genomics Inc., Rockville, MD 20850, USA.

出版信息

New J Phys. 2005 Jun 17;7:145. doi: 10.1088/1367-2630/7/1/000.

Abstract

A population of complete subgraphs or cliques in a protein network model is studied. The network evolves via duplication and divergence supplemented with linking a certain fraction of target-replica vertex pairs. We derive a clique population distribution, which scales linearly with the size of the network and is in a perfect agreement with numerical simulations. Fixing both parameters of the model so that the number of links and abundance of triangles are equal to those observed in the fruitfly protein-binding network, we precisely predict the 4- and 5-clique abundance. In addition, we show that such features as fat-tail degree distribution, various rates of average degree growth and nonaveraging, revealed recently for a particular case of a completely asymmetric divergence, are present in a general case of arbitrary divergence.

摘要

研究了蛋白质网络模型中的完全子图或团簇群体。该网络通过复制和分化演化,并辅以连接一定比例的目标 - 复制顶点对。我们推导出团簇群体分布,其与网络规模呈线性比例关系,并且与数值模拟完全吻合。固定模型的两个参数,使得链接数量和三角形丰度与果蝇蛋白质结合网络中观察到的相等,我们精确预测了4团簇和5团簇的丰度。此外,我们表明,最近在完全不对称分化的特定情况下揭示的诸如胖尾度分布、平均度增长的各种速率和非平均化等特征,在任意分化的一般情况下也存在。

相似文献

1
Cliques and duplication-divergence network growth.小团体与复制-分化网络增长。
New J Phys. 2005 Jun 17;7:145. doi: 10.1088/1367-2630/7/1/000.
2
Clique densification in networks.网络中的团块密集化。
Phys Rev E. 2023 Apr;107(4):L042301. doi: 10.1103/PhysRevE.107.L042301.
3
Quantum Clique Gossiping.量子团簇闲聊
Sci Rep. 2018 Feb 9;8(1):2747. doi: 10.1038/s41598-018-21069-7.
5
Sequential algorithm for fast clique percolation.用于快速团渗透的顺序算法。
Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Aug;78(2 Pt 2):026109. doi: 10.1103/PhysRevE.78.026109. Epub 2008 Aug 15.
6
k-Clique counting on large scale-graphs: a survey.大规模图上的k团计数:一项综述。
PeerJ Comput Sci. 2024 Nov 18;10:e2501. doi: 10.7717/peerj-cs.2501. eCollection 2024.

引用本文的文献

5
Graph spectral analysis of protein interaction network evolution.蛋白质相互作用网络演化的图谱分析。
J R Soc Interface. 2012 Oct 7;9(75):2653-66. doi: 10.1098/rsif.2012.0220. Epub 2012 May 2.
7
Questioning the ubiquity of neofunctionalization.质疑新功能化的普遍性。
PLoS Comput Biol. 2009 Jan;5(1):e1000252. doi: 10.1371/journal.pcbi.1000252. Epub 2009 Jan 2.

本文引用的文献

2
Inferring network mechanisms: the Drosophila melanogaster protein interaction network.推断网络机制:果蝇蛋白质相互作用网络
Proc Natl Acad Sci U S A. 2005 Mar 1;102(9):3192-7. doi: 10.1073/pnas.0409515102. Epub 2005 Feb 22.
4
Superfamilies of evolved and designed networks.进化与设计网络的超家族。
Science. 2004 Mar 5;303(5663):1538-42. doi: 10.1126/science.1089167.
5
A protein interaction map of Drosophila melanogaster.黑腹果蝇的蛋白质相互作用图谱。
Science. 2003 Dec 5;302(5651):1727-36. doi: 10.1126/science.1090289. Epub 2003 Nov 6.
6
Protein complexes and functional modules in molecular networks.分子网络中的蛋白质复合物和功能模块。
Proc Natl Acad Sci U S A. 2003 Oct 14;100(21):12123-8. doi: 10.1073/pnas.2032324100. Epub 2003 Sep 29.
8
9
Infinite-order percolation and giant fluctuations in a protein interaction network.蛋白质相互作用网络中的无穷阶渗流与巨大涨落
Phys Rev E Stat Nonlin Soft Matter Phys. 2002 Nov;66(5 Pt 2):055101. doi: 10.1103/PhysRevE.66.055101. Epub 2002 Nov 11.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验