Suppr超能文献

基于独立成分分析的人脸识别。

Face recognition by independent component analysis.

作者信息

Bartlett M S, Movellan J R, Sejnowski T J

机构信息

California Univ., San Diego, La Jolla, CA, USA.

出版信息

IEEE Trans Neural Netw. 2002;13(6):1450-64. doi: 10.1109/TNN.2002.804287.

Abstract

A number of current face recognition algorithms use face representations found by unsupervised statistical methods. Typically these methods find a set of basis images and represent faces as a linear combination of those images. Principal component analysis (PCA) is a popular example of such methods. The basis images found by PCA depend only on pairwise relationships between pixels in the image database. In a task such as face recognition, in which important information may be contained in the high-order relationships among pixels, it seems reasonable to expect that better basis images may be found by methods sensitive to these high-order statistics. Independent component analysis (ICA), a generalization of PCA, is one such method. We used a version of ICA derived from the principle of optimal information transfer through sigmoidal neurons. ICA was performed on face images in the FERET database under two different architectures, one which treated the images as random variables and the pixels as outcomes, and a second which treated the pixels as random variables and the images as outcomes. The first architecture found spatially local basis images for the faces. The second architecture produced a factorial face code. Both ICA representations were superior to representations based on PCA for recognizing faces across days and changes in expression. A classifier that combined the two ICA representations gave the best performance.

摘要

当前许多人脸识别算法使用通过无监督统计方法找到的面部表示。通常,这些方法会找到一组基图像,并将面部表示为这些图像的线性组合。主成分分析(PCA)就是此类方法的一个流行示例。PCA找到的基图像仅取决于图像数据库中像素之间的成对关系。在诸如人脸识别这样的任务中,重要信息可能包含在像素之间的高阶关系中,因此,期望通过对这些高阶统计敏感的方法找到更好的基图像似乎是合理的。独立成分分析(ICA)是PCA的一种推广,就是这样一种方法。我们使用了一种源自通过Sigmoid神经元进行最优信息传递原理的ICA版本。在FERET数据库中的面部图像上,在两种不同架构下执行ICA,一种将图像视为随机变量,像素视为结果,另一种将像素视为随机变量,图像视为结果。第一种架构找到了面部的空间局部基图像。第二种架构产生了一种因子面部编码。对于跨天和表情变化的人脸识别,这两种ICA表示都优于基于PCA的表示。结合这两种ICA表示的分类器性能最佳。

相似文献

1
Face recognition by independent component analysis.
IEEE Trans Neural Netw. 2002;13(6):1450-64. doi: 10.1109/TNN.2002.804287.
2
Constructing PCA baseline algorithms to reevaluate ICA-based face-recognition performance.
IEEE Trans Syst Man Cybern B Cybern. 2007 Aug;37(4):1015-21. doi: 10.1109/tsmcb.2007.891541.
3
Effective representation using ICA for face recognition robust to local distortion and partial occlusion.
IEEE Trans Pattern Anal Mach Intell. 2005 Dec;27(12):1977-81. doi: 10.1109/TPAMI.2005.242.
4
Enhanced independent component analysis and its application to content based face image retrieval.
IEEE Trans Syst Man Cybern B Cybern. 2004 Apr;34(2):1117-27. doi: 10.1109/tsmcb.2003.821449.
5
Patch-Based Principal Component Analysis for Face Recognition.
Comput Intell Neurosci. 2017;2017:5317850. doi: 10.1155/2017/5317850. Epub 2017 Jul 11.
6
A neural-network appearance-based 3-D object recognition using independent component analysis.
IEEE Trans Neural Netw. 2003;14(1):138-49. doi: 10.1109/TNN.2002.806949.
7
Face recognition using an enhanced independent component analysis approach.
IEEE Trans Neural Netw. 2007 Mar;18(2):530-41. doi: 10.1109/TNN.2006.885436.
8
Gabor-based kernel PCA with fractional power polynomial models for face recognition.
IEEE Trans Pattern Anal Mach Intell. 2004 May;26(5):572-81. doi: 10.1109/TPAMI.2004.1273927.
9
Independent component analysis of Gabor features for face recognition.
IEEE Trans Neural Netw. 2003;14(4):919-28. doi: 10.1109/TNN.2003.813829.
10
ICA color space for pattern recognition.
IEEE Trans Neural Netw. 2009 Feb;20(2):248-57. doi: 10.1109/TNN.2008.2005495. Epub 2008 Oct 7.

引用本文的文献

1
Facial Recognition Algorithms: A Systematic Literature Review.
J Imaging. 2025 Feb 13;11(2):58. doi: 10.3390/jimaging11020058.
2
Multi-Scale Temporal-Spatial Feature-Based Hybrid Deep Neural Network for Remaining Useful Life Prediction of Aero-Engine.
ACS Omega. 2024 Nov 18;9(48):47410-47427. doi: 10.1021/acsomega.4c03873. eCollection 2024 Dec 3.
3
Facial expression recognition (FER) survey: a vision, architectural elements, and future directions.
PeerJ Comput Sci. 2024 Jun 3;10:e2024. doi: 10.7717/peerj-cs.2024. eCollection 2024.
4
Brain MR Image Enhancement for Tumor Segmentation Using 3D U-Net.
Sensors (Basel). 2021 Nov 12;21(22):7528. doi: 10.3390/s21227528.
5
Distributional independent component analysis for diverse neuroimaging modalities.
Biometrics. 2022 Sep;78(3):1092-1105. doi: 10.1111/biom.13594. Epub 2021 Nov 15.
6
Geometrical features of lips using the properties of parabola for recognizing facial expression.
Cogn Neurodyn. 2021 Jun;15(3):481-499. doi: 10.1007/s11571-020-09638-x. Epub 2020 Oct 12.
7
A hybrid deep clustering approach for robust cell type profiling using single-cell RNA-seq data.
RNA. 2020 Oct;26(10):1303-1319. doi: 10.1261/rna.074427.119. Epub 2020 Jun 12.
8
TAI-SARNET: Deep Transferred Atrous-Inception CNN for Small Samples SAR ATR.
Sensors (Basel). 2020 Mar 19;20(6):1724. doi: 10.3390/s20061724.
9
Unsupervised machine learning for exploratory data analysis in imaging mass spectrometry.
Mass Spectrom Rev. 2020 May;39(3):245-291. doi: 10.1002/mas.21602. Epub 2019 Oct 11.
10
Recognition of Emotion Intensities Using Machine Learning Algorithms: A Comparative Study.
Sensors (Basel). 2019 Apr 21;19(8):1897. doi: 10.3390/s19081897.

本文引用的文献

1
Eigenfaces for recognition.
J Cogn Neurosci. 1991 Winter;3(1):71-86. doi: 10.1162/jocn.1991.3.1.71.
2
Could information theory provide an ecological theory of sensory processing?
Network. 2011;22(1-4):4-44. doi: 10.3109/0954898X.2011.638888.
3
Classifying Facial Actions.
IEEE Trans Pattern Anal Mach Intell. 1999 Oct;21(10):974. doi: 10.1109/34.799905.
4
Natural image statistics and efficient coding.
Network. 1996 May;7(2):333-9. doi: 10.1088/0954-898X/7/2/014.
5
Chromatic structure of natural scenes.
J Opt Soc Am A Opt Image Sci Vis. 2001 Jan;18(1):65-77. doi: 10.1364/josaa.18.000065.
6
Learning overcomplete representations.
Neural Comput. 2000 Feb;12(2):337-65. doi: 10.1162/089976600300015826.
7
Learning the parts of objects by non-negative matrix factorization.
Nature. 1999 Oct 21;401(6755):788-91. doi: 10.1038/44565.
9
Analysis of fMRI data by blind separation into independent spatial components.
Hum Brain Mapp. 1998;6(3):160-88. doi: 10.1002/(SICI)1097-0193(1998)6:3<160::AID-HBM5>3.0.CO;2-1.
10
The "independent components" of natural scenes are edge filters.
Vision Res. 1997 Dec;37(23):3327-38. doi: 10.1016/s0042-6989(97)00121-1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验