Suppr超能文献

用于大规模混沌神经网络的神经元-突触集成电路芯片组

Neuron-synapse IC chip-set for large-scale chaotic neural networks.

作者信息

Horio Y, Aihara K, Yamamoto O

机构信息

Dept. of Electron. Eng., Tokyo Denki Univ., Japan.

出版信息

IEEE Trans Neural Netw. 2003;14(5):1393-404. doi: 10.1109/TNN.2003.816349.

Abstract

We propose a neuron-synapse integrated circuit (IC) chip-set for large-scale chaotic neural networks. We use switched-capacitor (SC) circuit techniques to implement a three-internal-state transiently-chaotic neural network model. The SC chaotic neuron chip faithfully reproduces complex chaotic dynamics in real numbers through continuous state variables of the analog circuitry. We can digitally control most of the model parameters by means of programmable capacitive arrays embedded in the SC chaotic neuron chip. Since the output of the neuron is transfered into a digital pulse according to the all-or-nothing property of an axon, we design a synapse chip with digital circuits. We propose a memory-based synapse circuit architecture to achieve a rapid calculation of a vast number of weighted summations. Both of the SC neuron and the digital synapse circuits have been fabricated as IC forms. We have tested these IC chips extensively, and confirmed the functions and performance of the chip-set. The proposed neuron-synapse IC chip-set makes it possible to construct a scalable and reconfigurable large-scale chaotic neural network with 10000 neurons and 10000/sup 2/ synaptic connections.

摘要

我们提出了一种用于大规模混沌神经网络的神经元 - 突触集成电路(IC)芯片组。我们使用开关电容(SC)电路技术来实现一个具有三个内部状态的瞬态混沌神经网络模型。该SC混沌神经元芯片通过模拟电路的连续状态变量忠实地再现了实数中的复杂混沌动力学。我们可以借助嵌入在SC混沌神经元芯片中的可编程电容阵列对大多数模型参数进行数字控制。由于神经元的输出根据轴突的全或无特性转换为数字脉冲,我们设计了一种带有数字电路的突触芯片。我们提出了一种基于存储器的突触电路架构,以实现对大量加权求和的快速计算。SC神经元和数字突触电路均已制成IC形式。我们对这些IC芯片进行了广泛测试,并确认了该芯片组的功能和性能。所提出的神经元 - 突触IC芯片组使得构建一个具有10000个神经元和10000²个突触连接的可扩展且可重构的大规模混沌神经网络成为可能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验