Suppr超能文献

迭代图像恢复算法的加速

Acceleration of iterative image restoration algorithms.

作者信息

Biggs D S, Andrews M

出版信息

Appl Opt. 1997 Mar 10;36(8):1766-75. doi: 10.1364/ao.36.001766.

Abstract

A new technique for the acceleration of iterative image restoration algorithms is proposed. The method is based on the principles of vector extrapolation and does not require the minimization of a cost function. The algorithm is derived and its performance illustrated with Richardson-Lucy (R-L) and maximum entropy (ME) deconvolution algorithms and the Gerchberg-Saxton magnitude and phase retrieval algorithms. Considerable reduction in restoration times is achieved with little image distortion or computational overhead per iteration. The speedup achieved is shown to increase with the number of iterations performed and is easily adapted to suit different algorithms. An example R-L restoration achieves an average speedup of 40 times after 250 iterations and an ME method 20 times after only 50 iterations. An expression for estimating the acceleration factor is derived and confirmed experimentally. Comparisons with other acceleration techniques in the literature reveal significant improvements in speed and stability.

摘要

提出了一种加速迭代图像恢复算法的新技术。该方法基于向量外推原理,不需要最小化代价函数。推导了该算法,并用理查森-露西(R-L)和最大熵(ME)反卷积算法以及格奇伯格-萨克斯顿幅度和相位恢复算法说明了其性能。在每次迭代中,恢复时间显著减少,图像失真和计算开销很小。所实现的加速随着执行的迭代次数增加而增加,并且很容易适应不同的算法。一个R-L恢复的例子在250次迭代后平均加速40倍,而一个ME方法在仅50次迭代后加速20倍。推导了一个估计加速因子的表达式并通过实验得到证实。与文献中其他加速技术的比较表明,在速度和稳定性方面有显著改进。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验