Suppr超能文献

相关传感器情况下广义混合的估计。

Estimation of generalized mixture in the case of correlated sensors.

作者信息

Pieczynski W, Bouvrais J, Michel C

出版信息

IEEE Trans Image Process. 2000;9(2):308-12. doi: 10.1109/83.821750.

Abstract

This paper deals with unsupervised Bayesian classification of multidimensional data. We propose an extension of a previous method of generalized mixture estimation to the correlated sensors case. The method proposed is valid in the independent data case, as well as in the hidden Markov chain or field model case, with known applications in signal processing, particularly speech or image processing. The efficiency of the method proposed is shown via some simulations concerning hidden Markov fields, with application to unsupervised image segmentation.

摘要

本文探讨多维数据的无监督贝叶斯分类。我们提出将先前的广义混合估计方法扩展到相关传感器的情况。所提出的方法在独立数据情况下有效,在隐马尔可夫链或场模型情况下也有效,在信号处理,特别是语音或图像处理中有已知的应用。通过一些关于隐马尔可夫场的模拟展示了所提方法的效率,并将其应用于无监督图像分割。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验