Joshi A, Ramakrishman N, Houstis E N, Rice J R
Dept. of Comput. Eng. and Comput. Sci., Missouri Univ., Columbia, MO.
IEEE Trans Neural Netw. 1997;8(1):18-31. doi: 10.1109/72.554188.
In this paper, we propose two new neuro-fuzzy schemes, one for classification and one for clustering problems. The classification scheme is based on Simpson's fuzzy min-max method (1992, 1993) and relaxes some assumptions he makes. This enables our scheme to handle mutually nonexclusive classes. The neuro-fuzzy clustering scheme is a multiresolution algorithm that is modeled after the mechanics of human pattern recognition. We also present data from an exhaustive comparison of these techniques with neural, statistical, machine learning, and other traditional approaches to pattern recognition applications. The data sets used for comparisons include those from the machine learning repository at the University of California, Irvine. We find that our proposed schemes compare quite well with the existing techniques, and in addition offer the advantages of one-pass learning and online adaptation.
在本文中,我们提出了两种新的神经模糊方案,一种用于分类问题,另一种用于聚类问题。分类方案基于辛普森模糊最小-最大方法(1992年,1993年),并放宽了他所做的一些假设。这使我们的方案能够处理相互不排斥的类别。神经模糊聚类方案是一种多分辨率算法,它是仿照人类模式识别机制建模的。我们还展示了这些技术与神经、统计、机器学习以及其他传统模式识别应用方法进行详尽比较的数据。用于比较的数据集包括来自加利福尼亚大学欧文分校机器学习知识库的数据集。我们发现,我们提出的方案与现有技术相比表现相当出色,此外还具有一次性学习和在线自适应的优点。