Suppr超能文献

智能中性粒细胞诊断系统的心电描记图数据。

Intelligent Neutrosophic Diagnostic System for Cardiotocography Data.

机构信息

Port Said University, Faculty of Sciences, Port Said, Egypt.

Zagazig University, Faculty of Computers and Information, Zagazig, Egypt.

出版信息

Comput Intell Neurosci. 2021 Feb 10;2021:6656770. doi: 10.1155/2021/6656770. eCollection 2021.

Abstract

Cardiotocography data uncertainty is a critical task for the classification in biomedical field. Constructing good and efficient classifier via machine learning algorithms is necessary to help doctors in diagnosing the state of fetus heart rate. The proposed neutrosophic diagnostic system is an Interval Neutrosophic Rough Neural Network framework based on the backpropagation algorithm. It benefits from the advantages of neutrosophic set theory not only to improve the performance of rough neural networks but also to achieve a better performance than the other algorithms. The experimental results visualize the data using the boxplot for better understanding of attribute distribution. The performance measurement of the confusion matrix for the proposed framework is 95.1, 94.95, 95.2, and 95.1 concerning accuracy rate, precision, recall, and 1-score, respectively. WEKA application is used to analyse cardiotocography data performance measurement of different algorithms, e.g., neural network, decision table, the nearest neighbor, and rough neural network. The comparison with other algorithms shows that the proposed framework is both feasible and efficient classifier. Additionally, the receiver operation characteristic curve displays the proposed framework classifications of the pathologic, normal, and suspicious states by 0.93, 0.90, and 0.85 areas that are considered high and acceptable under the curve, respectively. Improving the performance measurements of the proposed framework by removing ineffective attributes via feature selection would be suitable advancement in the future. Moreover, the proposed framework can also be used in various real-life problems such as classification of coronavirus, social media, and satellite image.

摘要

心音描记图数据不确定性是生物医学领域分类的一个关键任务。通过机器学习算法构建良好且高效的分类器对于帮助医生诊断胎儿心率状态是必要的。所提出的中性诊断系统是一种基于反向传播算法的区间中性粗糙神经网络框架。它受益于中性集理论的优势,不仅可以提高粗糙神经网络的性能,而且可以比其他算法获得更好的性能。实验结果使用箱线图可视化数据,以便更好地理解属性分布。所提出框架的混淆矩阵性能度量分别为准确性、精度、召回率和 1 分的 95.1、94.95、95.2 和 95.1。WEKA 应用程序用于分析不同算法(例如神经网络、决策表、最近邻和粗糙神经网络)的心音描记图数据性能度量。与其他算法的比较表明,所提出的框架是一种可行且高效的分类器。此外,接收器操作特征曲线显示所提出的框架对病理、正常和可疑状态的分类分别为 0.93、0.90 和 0.85,这些曲线下面积被认为是高和可接受的。通过特征选择去除无效属性可以提高所提出框架的性能度量,这将是未来的合适进展。此外,所提出的框架还可以用于各种现实生活中的问题,如冠状病毒、社交媒体和卫星图像的分类。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4771/7895579/022e9b770ac6/CIN2021-6656770.001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验