Suppr超能文献

基于互补集合经验模态分解和极端梯度提升的脑电图信号中癫痫发作检测

Detecting Epileptic Seizures in EEG Signals with Complementary Ensemble Empirical Mode Decomposition and Extreme Gradient Boosting.

作者信息

Wu Jiang, Zhou Tengfei, Li Taiyong

机构信息

School of Economic Information Engineering, Southwestern University of Finance and Economics, Chengdu 611130, China.

Sichuan Province Key Laboratory of Financial Intelligence and Financial Engineering, Southwestern University of Finance and Economics, Chengdu 611130, China.

出版信息

Entropy (Basel). 2020 Jan 24;22(2):140. doi: 10.3390/e22020140.

Abstract

Epilepsy is a common nervous system disease that is characterized by recurrent seizures. An electroencephalogram (EEG) records neural activity, and it is commonly used for the diagnosis of epilepsy. To achieve accurate detection of epileptic seizures, an automatic detection approach of epileptic seizures, integrating complementary ensemble empirical mode decomposition (CEEMD) and extreme gradient boosting (XGBoost), named CEEMD-XGBoost, is proposed. Firstly, the decomposition method, CEEMD, which is capable of effectively reducing the influence of mode mixing and end effects, was utilized to divide raw EEG signals into a set of intrinsic mode functions (s) and residues. Secondly, the multi-domain features were extracted from raw signals and the decomposed components, and they were further selected according to the importance scores of the extracted features. Finally, XGBoost was applied to develop the epileptic seizure detection model. Experiments were conducted on two benchmark epilepsy EEG datasets, named the Bonn dataset and the CHB-MIT (Children's Hospital Boston and Massachusetts Institute of Technology) dataset, to evaluate the performance of our proposed CEEMD-XGBoost. The extensive experimental results indicated that, compared with some previous EEG classification models, CEEMD-XGBoost can significantly enhance the detection performance of epileptic seizures in terms of sensitivity, specificity, and accuracy.

摘要

癫痫是一种常见的神经系统疾病,其特征为反复发作的癫痫发作。脑电图(EEG)记录神经活动,常用于癫痫的诊断。为实现癫痫发作的准确检测,提出了一种将互补集合经验模态分解(CEEMD)和极端梯度提升(XGBoost)相结合的癫痫发作自动检测方法,即CEEMD-XGBoost。首先,利用能够有效降低模态混叠和端点效应影响的分解方法CEEMD,将原始脑电信号分解为一组本征模态函数和残差。其次,从原始信号和分解后的分量中提取多域特征,并根据提取特征的重要性得分进一步筛选。最后,应用XGBoost建立癫痫发作检测模型。在两个基准癫痫脑电数据集(即波恩数据集和CHB-MIT(波士顿儿童医院和麻省理工学院)数据集)上进行实验,以评估所提出的CEEMD-XGBoost的性能。大量实验结果表明,与一些先前的脑电分类模型相比,CEEMD-XGBoost在灵敏度、特异性和准确性方面能够显著提高癫痫发作的检测性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a964/7516550/d3e827287263/entropy-22-00140-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验