Suppr超能文献

一种用于PET中体积测定的模糊局部自适应贝叶斯分割方法。

A fuzzy locally adaptive Bayesian segmentation approach for volume determination in PET.

作者信息

Hatt Mathieu, Cheze le Rest Catherine, Turzo Alexandre, Roux Christian, Visvikis Dimitris

机构信息

LaTIM, INSERM, U650, 29609 Brest, France.

出版信息

IEEE Trans Med Imaging. 2009 Jun;28(6):881-93. doi: 10.1109/TMI.2008.2012036. Epub 2009 Jan 13.

Abstract

Accurate volume estimation in positron emission tomography (PET) is crucial for different oncology applications. The objective of our study was to develop a new fuzzy locally adaptive Bayesian (FLAB) segmentation for automatic lesion volume delineation. FLAB was compared with a threshold approach as well as the previously proposed fuzzy hidden Markov chains (FHMC) and the fuzzy C-Means (FCM) algorithms. The performance of the algorithms was assessed on acquired datasets of the IEC phantom, covering a range of spherical lesion sizes (10-37 mm), contrast ratios (4:1 and 8:1), noise levels (1, 2, and 5 min acquisitions), and voxel sizes (8 and 64 mm(3)). In addition, the performance of the FLAB model was assessed on realistic nonuniform and nonspherical volumes simulated from patient lesions. Results show that FLAB performs better than the other methodologies, particularly for smaller objects. The volume error was 5%-15% for the different sphere sizes (down to 13 mm), contrast and image qualities considered, with a high reproducibility (variation < 4%). By comparison, the thresholding results were greatly dependent on image contrast and noise, whereas FCM results were less dependent on noise but consistently failed to segment lesions < 2 cm. In addition, FLAB performed consistently better for lesions < 2 cm in comparison to the FHMC algorithm. Finally the FLAB model provided errors less than 10% for nonspherical lesions with inhomogeneous activity distributions. Future developments will concentrate on an extension of FLAB in order to allow the segmentation of separate activity distribution regions within the same functional volume as well as a robustness study with respect to different scanners and reconstruction algorithms.

摘要

在正电子发射断层扫描(PET)中进行准确的体积估计对于不同的肿瘤学应用至关重要。我们研究的目的是开发一种新的模糊局部自适应贝叶斯(FLAB)分割方法,用于自动勾勒病变体积。将FLAB与阈值法、先前提出的模糊隐马尔可夫链(FHMC)和模糊C均值(FCM)算法进行了比较。在国际电工委员会(IEC)体模的采集数据集上评估了这些算法的性能,该数据集涵盖了一系列球形病变大小(10 - 37毫米)、对比度(4:1和8:1)、噪声水平(1、2和5分钟采集)以及体素大小(8和64立方毫米)。此外,还在从患者病变模拟的真实非均匀和非球形体积上评估了FLAB模型的性能。结果表明,FLAB的性能优于其他方法,特别是对于较小的物体。对于所考虑的不同球体大小(小至13毫米)、对比度和图像质量,体积误差为5% - 15%,具有很高的可重复性(变化<4%)。相比之下,阈值化结果在很大程度上依赖于图像对比度和噪声,而FCM结果对噪声的依赖性较小,但始终无法分割小于2厘米的病变。此外,与FHMC算法相比,FLAB在小于2厘米的病变上表现始终更好。最后,对于具有不均匀活性分布的非球形病变,FLAB模型提供的误差小于10%。未来的发展将集中在扩展FLAB,以便能够分割同一功能体积内的单独活性分布区域,以及针对不同扫描仪和重建算法的稳健性研究。

相似文献

1
A fuzzy locally adaptive Bayesian segmentation approach for volume determination in PET.
IEEE Trans Med Imaging. 2009 Jun;28(6):881-93. doi: 10.1109/TMI.2008.2012036. Epub 2009 Jan 13.
2
Accurate automatic delineation of heterogeneous functional volumes in positron emission tomography for oncology applications.
Int J Radiat Oncol Biol Phys. 2010 May 1;77(1):301-8. doi: 10.1016/j.ijrobp.2009.08.018. Epub 2010 Jan 29.
3
Fuzzy hidden Markov chains segmentation for volume determination and quantitation in PET.
Phys Med Biol. 2007 Jun 21;52(12):3467-91. doi: 10.1088/0031-9155/52/12/010. Epub 2007 May 18.
4
PET functional volume delineation: a robustness and repeatability study.
Eur J Nucl Med Mol Imaging. 2011 Apr;38(4):663-72. doi: 10.1007/s00259-010-1688-6. Epub 2011 Jan 12.
6
The first MICCAI challenge on PET tumor segmentation.
Med Image Anal. 2018 Feb;44:177-195. doi: 10.1016/j.media.2017.12.007. Epub 2017 Dec 9.
9
Disease quantification on PET/CT images without explicit object delineation.
Med Image Anal. 2019 Jan;51:169-183. doi: 10.1016/j.media.2018.11.002. Epub 2018 Nov 10.

引用本文的文献

1
Multicollinearity and redundancy of the PET radiomic feature set.
Eur Radiol. 2025 May 7. doi: 10.1007/s00330-025-11637-7.
2
Evaluation of deep learning-based scatter correction on a long-axial field-of-view PET scanner.
Eur J Nucl Med Mol Imaging. 2025 Jun;52(7):2563-2576. doi: 10.1007/s00259-025-07120-6. Epub 2025 Feb 7.
3
Automated PD-L1 status prediction in lung cancer with multi-modal PET/CT fusion.
Sci Rep. 2024 Jul 19;14(1):16720. doi: 10.1038/s41598-024-66487-y.
4
A Review of Machine Learning Approaches for Brain Positron Emission Tomography Data Analysis.
Nucl Med Mol Imaging. 2024 Jun;58(4):203-212. doi: 10.1007/s13139-024-00845-6. Epub 2024 Feb 6.
6
Spach Transformer: Spatial and Channel-Wise Transformer Based on Local and Global Self-Attentions for PET Image Denoising.
IEEE Trans Med Imaging. 2024 Jun;43(6):2036-2049. doi: 10.1109/TMI.2023.3336237. Epub 2024 Jun 3.
8
From coarse to fine: a deep 3D probability volume contours framework for tumour segmentation and dose painting in PET images.
Front Radiol. 2023 Sep 5;3:1225215. doi: 10.3389/fradi.2023.1225215. eCollection 2023.
10
Evaluation of Dose-Painting in the Dominant Intraprostatic Lesions by Radiobiological Parameters using Ga- PSMA PET/CT.
J Biomed Phys Eng. 2022 Aug 1;12(4):369-376. doi: 10.31661/jbpe.v0i0.1912-1006. eCollection 2022 Aug.

本文引用的文献

1
Incorporation of wavelet-based denoising in iterative deconvolution for partial volume correction in whole-body PET imaging.
Eur J Nucl Med Mol Imaging. 2009 Jul;36(7):1064-75. doi: 10.1007/s00259-009-1065-5. Epub 2009 Feb 18.
2
Estimation of fuzzy Gaussian mixture and unsupervised statistical image segmentation.
IEEE Trans Image Process. 1997;6(3):425-40. doi: 10.1109/83.557353.
3
Estimation of generalized mixtures and its application in image segmentation.
IEEE Trans Image Process. 1997;6(10):1364-75. doi: 10.1109/83.624951.
4
A new algorithm for N-dimensional Hilbert scanning.
IEEE Trans Image Process. 1999;8(7):964-73. doi: 10.1109/83.772242.
5
Fuzzy hidden Markov chains segmentation for volume determination and quantitation in PET.
Phys Med Biol. 2007 Jun 21;52(12):3467-91. doi: 10.1088/0031-9155/52/12/010. Epub 2007 May 18.
6
The role of PET/CT scanning in radiotherapy planning.
Br J Radiol. 2006 Sep;79 Spec No 1:S27-35. doi: 10.1259/bjr/35628509.
7
Validation of a Monte Carlo simulation of the Philips Allegro/GEMINI PET systems using GATE.
Phys Med Biol. 2006 Feb 21;51(4):943-62. doi: 10.1088/0031-9155/51/4/013. Epub 2006 Feb 1.
9
Effects of ROI definition and reconstruction method on quantitative outcome and applicability in a response monitoring trial.
Eur J Nucl Med Mol Imaging. 2005 Mar;32(3):294-301. doi: 10.1007/s00259-004-1566-1. Epub 2004 Oct 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验