Suppr超能文献

在解决心理迷宫任务时上顶叶小叶的超高场并行成像

Ultra-high field parallel imaging of the superior parietal lobule during mental maze solving.

作者信息

Jerde Trenton A, Lewis Scott M, Goerke Ute, Gourtzelidis Pavlos, Tzagarakis Charidimos, Lynch Joshua, Moeller Steen, Van de Moortele Pierre-François, Adriany Gregor, Trangle Jeran, Uğurbil Kâmil, Georgopoulos Apostolos P

机构信息

Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota Medical School, Minneapolis, MN 55455, USA.

出版信息

Exp Brain Res. 2008 Jun;187(4):551-61. doi: 10.1007/s00221-008-1318-8. Epub 2008 Feb 28.

Abstract

We used ultra-high field (7 T) fMRI and parallel imaging to scan the superior parietal lobule (SPL) of human subjects as they mentally traversed a maze path in one of four directions (up, down, left, right). A counterbalanced design for maze presentation and a quasi-isotropic voxel (1.46 x 1.46 x 2 mm thick) collection were implemented. Fifty-one percent of single voxels in the SPL were tuned to the direction of the maze path. Tuned voxels were distributed throughout the SPL, bilaterally. A nearest neighbor analysis revealed a "honeycomb" arrangement such that voxels tuned to a particular direction tended to occur in clusters. Three-dimensional (3D) directional clusters were identified in SPL as oriented centroids traversing the cortical depth. There were 13 same-direction clusters per hemisphere containing 22 voxels per cluster, on the average; the mean nearest-neighbor, same-direction intercluster distance was 9.4 mm. These results provide a much finer detail of the directional tuning in SPL, as compared to those obtained previously at 4 T (Gourtzelidis et al. Exp Brain Res 165:273-282, 2005). The more accurate estimates of quantitative clustering parameters in 3D brain space in this study were made possible by the higher signal-to-noise and contrast-to-noise ratios afforded by the higher magnetic field of 7 T as well as the quasi-isotropic design of voxel data collection.

摘要

我们使用超高场(7T)功能磁共振成像(fMRI)和平行成像技术,对人类受试者的顶上小叶(SPL)进行扫描,受试者在脑海中沿四个方向(上、下、左、右)之一穿越迷宫路径。实施了迷宫呈现的平衡设计和准各向同性体素(1.46×1.46×2mm厚)采集。顶上小叶中51%的单个体素对迷宫路径方向有调谐。调谐体素双侧分布于整个顶上小叶。最近邻分析揭示了一种“蜂窝”排列,即调谐到特定方向的体素倾向于成簇出现。在顶上小叶中,三维(3D)方向簇被识别为贯穿皮质深度的定向质心。每个半球平均有13个同向簇,每个簇包含22个体素;同向簇间的平均最近邻距离为9.4mm。与之前在4T时获得的结果相比(Gourtzelidis等人,《实验脑研究》165:273 - 282,2005),这些结果提供了顶上小叶方向调谐更精细的细节。本研究中在三维脑空间中对定量聚类参数更准确的估计,得益于7T更高磁场提供的更高信噪比和对比噪声比,以及体素数据采集的准各向同性设计。

相似文献

1
Ultra-high field parallel imaging of the superior parietal lobule during mental maze solving.
Exp Brain Res. 2008 Jun;187(4):551-61. doi: 10.1007/s00221-008-1318-8. Epub 2008 Feb 28.
2
Mental maze solving: directional fMRI tuning and population coding in the superior parietal lobule.
Exp Brain Res. 2005 Sep;165(3):273-82. doi: 10.1007/s00221-005-2298-6. Epub 2005 Jun 7.
3
Greater superior than inferior parietal lobule activation with increasing rotation angle during mental rotation: an fMRI study.
Neuropsychologia. 2010 Jan;48(2):529-35. doi: 10.1016/j.neuropsychologia.2009.10.013. Epub 2009 Oct 20.
4
Top-down and bottom-up attentional guidance: investigating the role of the dorsal and ventral parietal cortices.
Exp Brain Res. 2010 Oct;206(2):197-208. doi: 10.1007/s00221-010-2326-z. Epub 2010 Jun 23.
5
Mental maze solving.
J Cogn Neurosci. 2000 Sep;12(5):813-27. doi: 10.1162/089892900562426.
6
Tactile-visual integration in the posterior parietal cortex: a functional magnetic resonance imaging study.
Brain Res Bull. 2008 Mar 28;75(5):513-25. doi: 10.1016/j.brainresbull.2007.09.004. Epub 2007 Oct 8.
7
Processing of abstract ordinal knowledge in the horizontal segment of the intraparietal sulcus.
J Neurosci. 2007 Aug 15;27(33):8952-6. doi: 10.1523/JNEUROSCI.2076-07.2007.
8
Interference with episodic memory retrieval following transcranial stimulation of the inferior but not the superior parietal lobule.
Neuropsychologia. 2013 Apr;51(5):900-6. doi: 10.1016/j.neuropsychologia.2013.01.023. Epub 2013 Feb 4.

引用本文的文献

1
Morphological patterns and spatial probability maps of the superior parietal sulcus in the human brain.
Cereb Cortex. 2023 Feb 7;33(4):1230-1245. doi: 10.1093/cercor/bhac132.
2
Bilateral parietal contributions to spatial language.
Brain Lang. 2017 Jan;164:16-24. doi: 10.1016/j.bandl.2016.09.007. Epub 2016 Sep 28.
3
What is feasible with imaging human brain function and connectivity using functional magnetic resonance imaging.
Philos Trans R Soc Lond B Biol Sci. 2016 Oct 5;371(1705). doi: 10.1098/rstb.2015.0361.
4
Contributions of cortical feedback to sensory processing in primary visual cortex.
Front Psychol. 2014 Nov 6;5:1223. doi: 10.3389/fpsyg.2014.01223. eCollection 2014.
5
Maps of space in human frontoparietal cortex.
J Physiol Paris. 2013 Dec;107(6):510-6. doi: 10.1016/j.jphysparis.2013.04.002. Epub 2013 Apr 18.
6
Development of functional imaging in the human brain (fMRI); the University of Minnesota experience.
Neuroimage. 2012 Aug 15;62(2):613-9. doi: 10.1016/j.neuroimage.2012.01.135. Epub 2012 Feb 8.
7
The search for the neural mechanisms of the set size effect.
Eur J Neurosci. 2011 Jun;33(11):2028-34. doi: 10.1111/j.1460-9568.2011.07717.x.
8
Encoding and decoding in fMRI.
Neuroimage. 2011 May 15;56(2):400-10. doi: 10.1016/j.neuroimage.2010.07.073. Epub 2010 Aug 4.
9
Perception and action selection dissociate human ventral and dorsal cortex.
J Cogn Neurosci. 2011 Jun;23(6):1494-506. doi: 10.1162/jocn.2010.21499. Epub 2010 May 13.
10
How good is the macaque monkey model of the human brain?
Curr Opin Neurobiol. 2009 Feb;19(1):6-11. doi: 10.1016/j.conb.2009.01.002. Epub 2009 Mar 2.

本文引用的文献

2
Robust detection of ocular dominance columns in humans using Hahn Spin Echo BOLD functional MRI at 7 Tesla.
Neuroimage. 2007 Oct 1;37(4):1161-77. doi: 10.1016/j.neuroimage.2007.05.020. Epub 2007 Jul 4.
3
Cortical mechanisms for shifting and holding visuospatial attention.
Cereb Cortex. 2008 Jan;18(1):114-25. doi: 10.1093/cercor/bhm036. Epub 2007 Apr 13.
4
Representing spatial relationships in posterior parietal cortex: single neurons code object-referenced position.
Cereb Cortex. 2007 Dec;17(12):2914-32. doi: 10.1093/cercor/bhm017. Epub 2007 Mar 26.
5
Spatio-temporal point-spread function of fMRI signal in human gray matter at 7 Tesla.
Neuroimage. 2007 Apr 1;35(2):539-52. doi: 10.1016/j.neuroimage.2006.12.030. Epub 2007 Jan 4.
6
Remapping attentional priorities: differential contribution of superior parietal lobule and intraparietal sulcus.
Cereb Cortex. 2007 Nov;17(11):2703-12. doi: 10.1093/cercor/bhl179. Epub 2007 Jan 30.
7
9.4T human MRI: preliminary results.
Magn Reson Med. 2006 Dec;56(6):1274-82. doi: 10.1002/mrm.21073.
8
Research on attention networks as a model for the integration of psychological science.
Annu Rev Psychol. 2007;58:1-23. doi: 10.1146/annurev.psych.58.110405.085516.
9
Application of parallel imaging to fMRI at 7 Tesla utilizing a high 1D reduction factor.
Magn Reson Med. 2006 Jul;56(1):118-29. doi: 10.1002/mrm.20934.
10
Functional MR imaging at 3.0 T versus 1.5 T: a practical review.
Neuroimaging Clin N Am. 2006 May;16(2):285-97, x. doi: 10.1016/j.nic.2006.02.008.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验