Zeugolis Dimitrios I, Khew Shih T, Yew Elijah S Y, Ekaputra Andrew K, Tong Yen W, Yung Lin-Yue L, Hutmacher Dietmar W, Sheppard Colin, Raghunath Michael
Tissue Modulation Laboratory, National University of Singapore (NUS), 117510 Singapore, Singapore.
Biomaterials. 2008 May;29(15):2293-305. doi: 10.1016/j.biomaterials.2008.02.009. Epub 2008 Mar 3.
Scaffolds manufactured from biological materials promise better clinical functionality, providing that characteristic features are preserved. Collagen, a prominent biopolymer, is used extensively for tissue engineering applications, because its signature biological and physico-chemical properties are retained in in vitro preparations. We show here for the first time that the very properties that have established collagen as the leading natural biomaterial are lost when it is electro-spun into nano-fibres out of fluoroalcohols such as 1,1,1,3,3,3-hexafluoro-2-propanol or 2,2,2-trifluoroethanol. We further identify the use of fluoroalcohols as the major culprit in the process. The resultant nano-scaffolds lack the unique ultra-structural axial periodicity that confirms quarter-staggered supramolecular assemblies and the capacity to generate second harmonic signals, representing the typical crystalline triple-helical structure. They were also characterised by low denaturation temperatures, similar to those obtained from gelatin preparations (p>0.05). Likewise, circular dichroism spectra revealed extensive denaturation of the electro-spun collagen. Using pepsin digestion in combination with quantitative SDS-PAGE, we corroborate great losses of up to 99% of triple-helical collagen. In conclusion, electro-spinning of collagen out of fluoroalcohols effectively denatures this biopolymer, and thus appears to defeat its purpose, namely to create biomimetic scaffolds emulating the collagen structure and function of the extracellular matrix.
由生物材料制成的支架有望具备更好的临床功能,前提是其特征得以保留。胶原蛋白作为一种重要的生物聚合物,因其标志性的生物学和物理化学特性在体外制剂中得以保留,而被广泛应用于组织工程领域。我们首次在此表明,当胶原蛋白从诸如1,1,1,3,3,3-六氟-2-丙醇或2,2,2-三氟乙醇等氟代醇中静电纺丝制成纳米纤维时,那些使其成为领先的天然生物材料的特性会丧失。我们进一步确定氟代醇的使用是该过程中的主要罪魁祸首。所得的纳米支架缺乏独特的超结构轴向周期性,这种周期性证实了四分之一交错的超分子组装以及产生二次谐波信号的能力,而这些代表了典型的结晶三螺旋结构。它们还具有较低的变性温度,类似于从明胶制剂中获得的变性温度(p>0.05)。同样,圆二色光谱显示静电纺丝胶原蛋白发生了广泛变性。通过将胃蛋白酶消化与定量SDS-PAGE相结合,我们证实三螺旋胶原蛋白损失高达99%。总之,从氟代醇中静电纺丝胶原蛋白会有效地使这种生物聚合物变性,因此似乎违背了其目的,即制造模仿细胞外基质胶原蛋白结构和功能的仿生支架。