Suppr超能文献

立体视盘照片上视神经乳头的自动评估。

Automated assessment of the optic nerve head on stereo disc photographs.

作者信息

Xu Juan, Ishikawa Hiroshi, Wollstein Gadi, Bilonick Richard A, Sung Kyung R, Kagemann Larry, Townsend Kelly A, Schuman Joel S

机构信息

UPMC Eye Center, Eye and Ear Institute, Ophthalmology and Visual Science Research Center, Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA.

出版信息

Invest Ophthalmol Vis Sci. 2008 Jun;49(6):2512-7. doi: 10.1167/iovs.07-1229. Epub 2008 Mar 7.

Abstract

PURPOSE

To develop automated software for optic nerve head (ONH) quantitative assessment from stereoscopic disc photographs and to evaluate its performance in comparison with human expert assessment.

METHODS

A fully automated system, including three-dimensional ONH modeling, disc margin detection, cup margin detection, and calculation of stereometric ONH parameters, was developed and tested. One eye each from 54 subjects (23 healthy, 17 suspected glaucoma, and 14 glaucoma) was enrolled. The majority opinion of three experts defined disc and cup margins on the disc photographs was used for comparison. Seven ONH parameters, disc area, rim area, rim volume, cup area, cup volume, cup-to-disc (C/D) area ratio, and vertical C/D ratio, were computed based on both machine- and expert-defined margins and compared between the methods.

RESULTS

All automated ONH measurements showed good correlation with the expert defined margins (Pearson r = 0.90, disc area; 0.56, rim area; 0.78, rim volume; 0.88, cup area; 0.93, cup volume; 0.69, C/D area ratio; and 0.67, vertical C/D ratio; all P <or= 0.0001). No statistically significant difference was found in the glaucoma-discriminating ability of all seven ONH parameters (P >or= 0.21). The mean or median of automatically defined disc and cup areas was significantly higher than the subjective assessment (disc area P = 0.0001, t-test; cup area P = 0.036, Wilcoxon signed ranks test), although they had high correlation coefficients. The software failed to detect the disc margin for all the disc photographs with peripapillary atrophy.

CONCLUSIONS

The automated ONH analysis method provides an objective and quantitative ONH evaluation using widely available stereo disc photographs.

摘要

目的

开发用于从立体视盘照片进行视神经乳头(ONH)定量评估的自动化软件,并与人类专家评估相比较来评估其性能。

方法

开发并测试了一个全自动系统,包括三维ONH建模、视盘边缘检测、杯盘边缘检测以及立体视盘参数计算。纳入了54名受试者各一只眼睛(23名健康者、17名疑似青光眼患者和14名青光眼患者)。以三位专家对视盘照片上视盘和杯盘边缘的多数意见作为比较标准。基于机器和专家定义的边缘计算了七个ONH参数,即视盘面积、盘沿面积、盘沿体积、杯盘面积、杯盘体积、杯盘面积比(C/D)和垂直C/D比,并对两种方法的结果进行比较。

结果

所有自动化ONH测量结果与专家定义的边缘均显示出良好的相关性(Pearson相关系数r:视盘面积为0.90;盘沿面积为0.56;盘沿体积为0.78;杯盘面积为0.88;杯盘体积为0.93;C/D面积比为0.69;垂直C/D比为0.67;所有P≤0.0001)。七个ONH参数在青光眼鉴别能力方面均未发现统计学显著差异(P≥0.21)。自动定义的视盘和杯盘面积的均值或中位数显著高于主观评估(视盘面积P = 0.0001,t检验;杯盘面积P = 0.036,Wilcoxon符号秩检验),尽管它们具有较高的相关系数。该软件无法检测出所有存在视乳头周围萎缩的视盘照片的视盘边缘。

结论

自动化ONH分析方法利用广泛可得的立体视盘照片提供了一种客观、定量的ONH评估。

相似文献

1
Automated assessment of the optic nerve head on stereo disc photographs.立体视盘照片上视神经乳头的自动评估。
Invest Ophthalmol Vis Sci. 2008 Jun;49(6):2512-7. doi: 10.1167/iovs.07-1229. Epub 2008 Mar 7.

引用本文的文献

6
Three dimensional optical coherence tomography imaging: advantages and advances.三维光学相干断层成像:优势与进展。
Prog Retin Eye Res. 2010 Nov;29(6):556-79. doi: 10.1016/j.preteyeres.2010.05.005. Epub 2010 Jun 11.
7
Utility of digital stereo images for optic disc evaluation.数字立体图像在视盘评估中的应用。
Invest Ophthalmol Vis Sci. 2010 Nov;51(11):5667-74. doi: 10.1167/iovs.09-4999. Epub 2010 May 26.
9
Segmentation of the optic disc in 3-D OCT scans of the optic nerve head.视神经头的 3-D OCT 扫描中的视盘分割。
IEEE Trans Med Imaging. 2010 Jan;29(1):159-68. doi: 10.1109/TMI.2009.2031324. Epub 2009 Sep 15.

本文引用的文献

5
Optic nerve head segmentation.视神经乳头分割
IEEE Trans Med Imaging. 2004 Feb;23(2):256-64. doi: 10.1109/TMI.2003.823261.
10
Neuroretinal rim measurement error using PC-based stereo software.
Clin Exp Ophthalmol. 2000 Jun;28(3):178-80. doi: 10.1046/j.1442-9071.2000.00298.x.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验