Garcia-Contreras Lucila, Wong Yun-Ling, Muttil Pavan, Padilla Danielle, Sadoff Jerry, Derousse Jessica, Germishuizen Willem Andreas, Goonesekera Sunali, Elbert Katharina, Bloom Barry R, Miller Rich, Fourie P Bernard, Hickey Anthony, Edwards David
University of North Carolina, Chapel Hill, NC 27599-7360, USA.
Proc Natl Acad Sci U S A. 2008 Mar 25;105(12):4656-60. doi: 10.1073/pnas.0800043105. Epub 2008 Mar 14.
By manufacturing a single-particle system in two particulate forms (i.e., micrometer size and nanometer size), we have designed a bacterial vaccine form that exhibits improved efficacy of immunization. Microstructural properties are adapted to alter dispersive and aerosol properties independently. Dried "nanomicroparticle" vaccines possess two axes of nanoscale dimensions and a third axis of micrometer dimension; the last one permits effective micrometer-like physical dispersion, and the former provides alignment of the principal nanodimension particle axes with the direction of airflow. Particles formed with this combination of nano- and micrometer-scale dimensions possess a greater ability to aerosolize than particles of standard spherical isotropic shape and of similar geometric diameter. Here, we demonstrate effective application of this biomaterial by using the live attenuated tuberculosis vaccine bacille Calmette-Guérin (BCG). Prepared as a spray-dried nanomicroparticle aerosol, BCG vaccine exhibited high-efficiency delivery and peripheral lung targeting capacity from a low-cost and technically simple delivery system. Aerosol delivery of the BCG nanomicroparticle to normal guinea pigs subsequently challenged with virulent Mycobacterium tuberculosis significantly reduced bacterial burden and lung pathology both relative to untreated animals and to control animals immunized with the standard parenteral BCG.
通过制造具有两种颗粒形式(即微米尺寸和纳米尺寸)的单颗粒系统,我们设计了一种免疫效果更佳的细菌疫苗形式。调整微观结构特性以分别改变分散性和气溶胶特性。干燥的“纳米微粒”疫苗具有两个纳米级尺寸的轴和一个微米级尺寸的轴;后者允许实现类似微米级的有效物理分散,而前者使主要纳米尺寸颗粒轴与气流方向对齐。由这种纳米级和微米级尺寸组合形成的颗粒比具有相似几何直径的标准球形各向同性颗粒具有更强的雾化能力。在此,我们通过使用减毒活结核疫苗卡介苗(BCG)证明了这种生物材料的有效应用。制成喷雾干燥纳米微粒气雾剂的卡介苗疫苗,从低成本且技术简单的给药系统中展现出高效递送和外周肺靶向能力。将卡介苗纳米微粒气溶胶递送至随后受到强毒力结核分枝杆菌攻击的正常豚鼠体内,相对于未治疗动物以及用标准肠胃外卡介苗免疫的对照动物,显著降低了细菌负荷和肺部病理变化。