Raij Tommi, Karhu Jari, Kicić Dubravko, Lioumis Pantelis, Julkunen Petro, Lin Fa-Hsuan, Ahveninen Jyrki, Ilmoniemi Risto J, Mäkelä Jyrki P, Hämäläinen Matti, Rosen Bruce R, Belliveau John W
MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA 02129, USA.
Neuroimage. 2008 May 1;40(4):1792-7. doi: 10.1016/j.neuroimage.2008.01.055. Epub 2008 Feb 14.
In serial sensory processing, information flows from the thalamus via primary sensory cortices to higher-order association areas. However, association cortices also receive, albeit weak, direct thalamocortical sensory inputs of unknown function. For example, while information proceeds from primary (SI) to secondary (SII) somatosensory cortex in a serial fashion, both areas are known to receive direct thalamocortical sensory input. The present study examines the potential roles of such parallel input arrangements. The subjects were presented with median nerve somatosensory stimuli with the instruction to respond with the contralateral hand. The locations and time courses of the activated brain areas were first identified with magnetoencephalography (MEG). In a subsequent session, these brain areas were modulated with single-pulse transcranial magnetic stimulation (TMS) at 15-210 ms after the somatosensory stimulus while electroencephalography (EEG) was recorded. TMS pulses at 15-40 ms post-stimulus significantly speeded up reaction times and somatosensory-evoked responses, with largest facilitatory effects when the TMS pulse was given to contralateral SII at about 20 ms. To explain the results, we propose that the early somatosensory-evoked physiological SII activation exerts an SII-->SI influence that facilitates the reciprocal SI-->SII pathway - with TMS to SII we apparently amplified this mechanism. The results suggest that the human brain may utilize parallel inputs to facilitate long-distance cortico-cortical connections, resulting in accelerated processing and speeded reaction times. This arrangement could also allow very early top-down modulation of the bottom-up stream of sensory information.
在串行感觉处理过程中,信息从丘脑经初级感觉皮层流向高阶联合区。然而,联合皮层也会接收来自丘脑皮质的直接感觉输入,尽管这种输入较弱,其功能尚不清楚。例如,虽然信息以串行方式从初级躯体感觉皮层(SI)传至次级躯体感觉皮层(SII),但已知这两个区域都会接收来自丘脑皮质的直接感觉输入。本研究探讨了这种并行输入模式的潜在作用。研究人员向受试者的正中神经施加躯体感觉刺激,并要求他们用对侧手做出反应。首先通过脑磁图(MEG)确定激活脑区的位置和时间进程。在随后的实验环节中,在躯体感觉刺激后15 - 210毫秒时,用单脉冲经颅磁刺激(TMS)对这些脑区进行调制,同时记录脑电图(EEG)。刺激后15 - 40毫秒时施加的TMS脉冲显著加快了反应时间和体感诱发电位,当在大约20毫秒时对侧SII施加TMS脉冲时,促进作用最大。为了解释这些结果,我们提出早期体感诱发的生理性SII激活会产生SII→SI的影响,从而促进SI→SII的相互连接途径——通过对SII施加TMS,我们显然放大了这一机制。结果表明,人类大脑可能利用并行输入来促进远距离的皮质 - 皮质连接,从而加快处理速度和缩短反应时间。这种模式还可能允许对自下而上的感觉信息流进行非常早期的自上而下的调制。