Suppr超能文献

在一项血色病遗传修饰因子研究中对铁代谢基因的单核苷酸多态性选择。

SNP selection for genes of iron metabolism in a study of genetic modifiers of hemochromatosis.

作者信息

Constantine Clare C, Gurrin Lyle C, McLaren Christine E, Bahlo Melanie, Anderson Gregory J, Vulpe Chris D, Forrest Susan M, Allen Katrina J, Gertig Dorota M

机构信息

The Centre for Molecular, Environmental, Genetic and Analytic (MEGA) Epidemiology, School of Population Health, The University of Melbourne, Melbourne, Australia.

出版信息

BMC Med Genet. 2008 Mar 20;9:18. doi: 10.1186/1471-2350-9-18.

Abstract

BACKGROUND

We report our experience of selecting tag SNPs in 35 genes involved in iron metabolism in a cohort study seeking to discover genetic modifiers of hereditary hemochromatosis.

METHODS

We combined our own and publicly available resequencing data with HapMap to maximise our coverage to select 384 SNPs in candidate genes suitable for typing on the Illumina platform.

RESULTS

Validation/design scores above 0.6 were not strongly correlated with SNP performance as estimated by Gentrain score. We contrasted results from two tag SNP selection algorithms, LDselect and Tagger. Varying r2 from 0.5 to 1.0 produced a near linear correlation with the number of tag SNPs required. We examined the pattern of linkage disequilibrium of three levels of resequencing coverage for the transferrin gene and found HapMap phase 1 tag SNPs capture 45% of the > or = 3% MAF SNPs found in SeattleSNPs where there is nearly complete resequencing. Resequencing can reveal adjacent SNPs (within 60 bp) which may affect assay performance. We report the number of SNPs present within the region of six of our larger candidate genes, for different versions of stock genotyping assays.

CONCLUSION

A candidate gene approach should seek to maximise coverage, and this can be improved by adding to HapMap data any available sequencing data. Tag SNP software must be fast and flexible to data changes, since tag SNP selection involves iteration as investigators seek to satisfy the competing demands of coverage within and between populations, and typability on the technology platform chosen.

摘要

背景

在一项旨在发现遗传性血色素沉着症基因修饰因子的队列研究中,我们报告了在参与铁代谢的35个基因中选择标签单核苷酸多态性(tag SNPs)的经验。

方法

我们将自己的和公开可用的重测序数据与HapMap相结合,以最大限度地扩大覆盖范围,在适合于Illumina平台分型的候选基因中选择384个单核苷酸多态性。

结果

验证/设计得分高于0.6与由Gentrain得分估计的单核苷酸多态性性能没有强相关性。我们对比了两种标签单核苷酸多态性选择算法LDselect和Tagger的结果。从0.5到1.0变化的r2与所需标签单核苷酸多态性的数量产生了近乎线性的相关性。我们检查了转铁蛋白基因三个重测序覆盖水平的连锁不平衡模式,发现HapMap 1期标签单核苷酸多态性捕获了在SeattleSNPs中发现的≥3%的单倍型频率(MAF)单核苷酸多态性的45%,在那里有近乎完全的重测序。重测序可以揭示可能影响检测性能的相邻单核苷酸多态性(在60 bp内)。我们报告了我们六个较大候选基因区域内存在的单核苷酸多态性数量,针对不同版本的库存基因分型检测。

结论

候选基因方法应寻求最大限度地扩大覆盖范围,并且通过将任何可用的测序数据添加到HapMap数据中可以对此加以改进。标签单核苷酸多态性软件必须快速且能灵活应对数据变化,因为标签单核苷酸多态性选择涉及迭代,因为研究人员试图满足群体内部和群体之间覆盖范围以及所选技术平台上可分型性的相互竞争的需求。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/66e9/2289803/18e1a754af98/1471-2350-9-18-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验