Morgan Robert J, Soltesz Ivan
Department of Anatomy and Neurobiology, University of California, 193 Irvine Hall, Irvine, CA 92697, USA.
Proc Natl Acad Sci U S A. 2008 Apr 22;105(16):6179-84. doi: 10.1073/pnas.0801372105. Epub 2008 Mar 28.
Many complex neuronal circuits have been shown to display nonrandom features in their connectivity. However, the functional impact of nonrandom network topologies in neurological diseases is not well understood. The dentate gyrus is an excellent circuit in which to study such functional implications because proepileptic insults cause its structure to undergo a number of specific changes in both humans and animals, including the formation of previously nonexistent granule cell-to-granule cell recurrent excitatory connections. Here, we use a large-scale, biophysically realistic model of the epileptic rat dentate gyrus to reconnect the aberrant recurrent granule cell network in four biologically plausible ways to determine how nonrandom connectivity promotes hyperexcitability after injury. We find that network activity of the dentate gyrus is quite robust in the face of many major alterations in granule cell-to-granule cell connectivity. However, the incorporation of a small number of highly interconnected granule cell hubs greatly increases network activity, resulting in a hyperexcitable, potentially seizure-prone circuit. Our findings demonstrate the functional relevance of nonrandom microcircuits in epileptic brain networks, and they provide a mechanism that could explain the role of granule cells with hilar basal dendrites in contributing to hyperexcitability in the pathological dentate gyrus.
许多复杂的神经元回路已被证明在其连接性方面呈现出非随机特征。然而,非随机网络拓扑结构在神经系统疾病中的功能影响尚未得到充分理解。齿状回是研究此类功能影响的一个绝佳回路,因为癫痫发作前的损伤会导致其结构在人类和动物中发生一些特定变化,包括形成以前不存在的颗粒细胞到颗粒细胞的反复兴奋性连接。在这里,我们使用癫痫大鼠齿状回的大规模、生物物理逼真模型,以四种生物学上合理的方式重新连接异常的颗粒细胞反复网络,以确定非随机连接性如何促进损伤后的过度兴奋。我们发现,面对颗粒细胞到颗粒细胞连接性的许多主要改变,齿状回的网络活动相当稳健。然而,加入少量高度相互连接的颗粒细胞枢纽会大大增加网络活动,导致一个过度兴奋、可能易发生癫痫的回路。我们的研究结果证明了非随机微回路在癫痫脑网络中的功能相关性,并提供了一种机制,可以解释具有海马基底树突的颗粒细胞在病理性齿状回中导致过度兴奋的作用。