Moxon Simon, Moulton Vincent, Kim Jan T
School of Computing Sciences, University of East Anglia, Norwich, NR4 7TJ, UK.
Algorithms Mol Biol. 2008 Mar 31;3:3. doi: 10.1186/1748-7188-3-3.
Experimental identification of microRNA (miRNA) targets is a difficult and time consuming process. As a consequence several computational prediction methods have been devised in order to predict targets for follow up experimental validation. Current computational target prediction methods use only the miRNA sequence as input. With an increasing number of experimentally validated targets becoming available, utilising this additional information in the search for further targets may help to improve the specificity of computational methods for target site prediction.
We introduce a generic target prediction method, the Stacking Binding Matrix (SBM) that uses both information about the miRNA as well as experimentally validated target sequences in the search for candidate target sequences. We demonstrate the utility of our method by applying it to both animal and plant data sets and compare it with miRanda, a commonly used target prediction method.
We show that SBM can be applied to target prediction in both plants and animals and performs well in terms of sensitivity and specificity. Open source code implementing the SBM method, together with documentation and examples are freely available for download from the address in the Availability and Requirements section.
微小RNA(miRNA)靶标的实验鉴定是一个困难且耗时的过程。因此,人们设计了几种计算预测方法来预测靶标,以便后续进行实验验证。当前的计算靶标预测方法仅将miRNA序列作为输入。随着越来越多经过实验验证的靶标可用,在寻找更多靶标的过程中利用这些额外信息可能有助于提高靶位点预测计算方法的特异性。
我们引入了一种通用的靶标预测方法——堆叠结合矩阵(SBM),该方法在寻找候选靶标序列时既利用了有关miRNA的信息,也利用了经过实验验证的靶标序列。我们通过将其应用于动物和植物数据集来证明我们方法的实用性,并将其与常用的靶标预测方法miRanda进行比较。
我们表明SBM可应用于植物和动物的靶标预测,并且在敏感性和特异性方面表现良好。实现SBM方法的开源代码以及文档和示例可从“可用性和要求”部分的地址免费下载。