Suppr超能文献

MTar:一种用于人类转录组的计算 miRNA 靶标预测架构。

MTar: a computational microRNA target prediction architecture for human transcriptome.

机构信息

Centre for Bioinformatics, University of Kerala, Thiruvananthapuram, India.

出版信息

BMC Bioinformatics. 2010 Jan 18;11 Suppl 1(Suppl 1):S2. doi: 10.1186/1471-2105-11-S1-S2.

Abstract

BACKGROUND

MicroRNAs (miRNAs) play an essential task in gene regulatory networks by inhibiting the expression of target mRNAs. As their mRNA targets are genes involved in important cell functions, there is a growing interest in identifying the relationship between miRNAs and their target mRNAs. So, there is now a imperative need to develop a computational method by which we can identify the target mRNAs of existing miRNAs. Here, we proposed an efficient machine learning model to unravel the relationship between miRNAs and their target mRNAs.

RESULTS

We present a novel computational architecture MTar for miRNA target prediction which reports 94.5% sensitivity and 90.5% specificity. We identified 16 positional, thermodynamic and structural parameters from the wet lab proven miRNA:mRNA pairs and MTar makes use of these parameters for miRNA target identification. It incorporates an Artificial Neural Network (ANN) verifier which is trained by wet lab proven microRNA targets. A number of hitherto unknown targets of many miRNA families were located using MTar. The method identifies all three potential miRNA targets (5' seed-only, 5' dominant, and 3' canonical) whereas the existing solutions focus on 5' complementarities alone.

CONCLUSION

MTar, an ANN based architecture for identifying functional regulatory miRNA-mRNA interaction using predicted miRNA targets. The area of target prediction has received a new momentum with the function of a thermodynamic model incorporating target accessibility. This model incorporates sixteen structural, thermodynamic and positional features of residues in miRNA: mRNA pairs were employed to select target candidates. So our novel machine learning architecture, MTar is found to be more comprehensive than the existing methods in predicting miRNA targets, especially human transcritome.

摘要

背景

MicroRNAs(miRNAs)通过抑制靶 mRNA 的表达在基因调控网络中发挥重要作用。由于它们的 mRNA 靶标是参与重要细胞功能的基因,因此人们越来越感兴趣于确定 miRNAs 与其靶 mRNA 之间的关系。因此,现在迫切需要开发一种计算方法,通过该方法我们可以识别现有的 miRNAs 的靶 mRNA。在这里,我们提出了一种有效的机器学习模型,以揭示 miRNAs 与其靶 mRNA 之间的关系。

结果

我们提出了一种用于 miRNA 靶标预测的新型计算架构 MTar,其报告的灵敏度为 94.5%,特异性为 90.5%。我们从已证实的 miRNA:mRNA 对中确定了 16 个位置、热力学和结构参数,MTar 利用这些参数进行 miRNA 靶标识别。它集成了一个人工神经网络(ANN)验证器,该验证器由已证实的 miRNA 靶标进行训练。使用 MTar 定位了许多 miRNA 家族的许多迄今未知的靶标。该方法识别所有三个潜在的 miRNA 靶标(仅 5'种子、5'优势和 3'经典),而现有的解决方案仅专注于 5'互补性。

结论

MTar 是一种基于 ANN 的架构,用于使用预测的 miRNA 靶标识别功能性调节 miRNA-mRNA 相互作用。靶标预测领域因包含靶标可及性的热力学模型而获得新的动力。该模型结合了 miRNA:mRNA 对中残基的十六个结构、热力学和位置特征,用于选择靶标候选物。因此,我们的新型机器学习架构 MTar 在预测 miRNA 靶标方面被发现比现有的方法更全面,特别是人类转录组。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验