Beamer Paloma, Canales Robert A, Leckie James O
Community, Environment and Policy, Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, Arizona 85724, USA.
J Expo Sci Environ Epidemiol. 2009 Mar;19(3):274-83. doi: 10.1038/jes.2008.16. Epub 2008 Apr 2.
Many dermal exposure models use stochastic techniques to sample parameter distributions derived from experimental data to more accurately represent variability and uncertainty. Transfer efficiencies represent the fraction of a surface contaminant transferred from the surface to the skin during a contact event. Although an important parameter for assessing dermal exposure, examination of the literature confirms that no single study is large enough to provide a basis for a transfer efficiency distribution for use in stochastic dermal exposure models. It is therefore necessary to combine data sets from multiple studies to achieve the largest data set possible for distribution analysis. A literature review was conducted to identify publications reporting transfer efficiencies. Data sets were compared using the Kruskal-Wallis test to determine whether they arise from the same distribution. Combined data were evaluated for several theoretical distributions using the Kolmogorov-Smirnov and chi(2)-goodness-of-fit tests. Our literature review identified 35 studies comprising 25 different sampling methods, 25 chemicals, and 10 surface types. Distributions were developed for three different chemicals (chlorpyrifos, pyrethrin I, and piperonyl butoxide) on three different surface types (carpet, vinyl, and foil). Only the lognormal distribution was consistently accepted for each chemical and surface combination. Fitted distributions were significantly different (Kruskal-Wallis test; P<0.001) across chemicals and surface types. In future studies, increased effort should be placed on developing large studies, which more accurately represent transfer to human skin from surfaces, and on developing a normative transfer efficiency measure so that data from different methodologies can be compared.
许多皮肤暴露模型使用随机技术对从实验数据得出的参数分布进行采样,以更准确地表示变异性和不确定性。转移效率表示在接触事件期间从表面转移到皮肤的表面污染物的比例。尽管转移效率是评估皮肤暴露的一个重要参数,但对文献的研究证实,没有一项单独的研究规模大到足以提供用于随机皮肤暴露模型的转移效率分布的基础。因此,有必要合并来自多项研究的数据集,以获得尽可能大的数据集用于分布分析。进行了一项文献综述,以识别报告转移效率的出版物。使用Kruskal-Wallis检验对数据集进行比较,以确定它们是否来自相同的分布。使用Kolmogorov-Smirnov检验和卡方拟合优度检验对合并后的数据进行了几种理论分布的评估。我们的文献综述确定了35项研究,包括25种不同的采样方法、25种化学物质和10种表面类型。针对三种不同的化学物质(毒死蜱、除虫菊素I和胡椒基丁醚)在三种不同的表面类型(地毯、乙烯基和箔)上建立了分布。对于每种化学物质和表面组合,只有对数正态分布始终被接受。不同化学物质和表面类型的拟合分布存在显著差异(Kruskal-Wallis检验;P<0.001)。在未来的研究中,应加大力度开展更准确地表示从表面向人体皮肤转移情况的大型研究,并制定标准化的转移效率测量方法,以便能够比较来自不同方法的数据。