Suppr超能文献

使用经颅磁刺激/正电子发射断层扫描和结构方程模型对运动连接性进行建模。

Modeling motor connectivity using TMS/PET and structural equation modeling.

作者信息

Laird Angela R, Robbins Jacob M, Li Karl, Price Larry R, Cykowski Matthew D, Narayana Shalini, Laird Robert W, Franklin Crystal, Fox Peter T

机构信息

Research Imaging Center, University of Texas Health Science Center, San Antonio, Texas 78229-3900, USA.

出版信息

Neuroimage. 2008 Jun;41(2):424-36. doi: 10.1016/j.neuroimage.2008.01.065. Epub 2008 Feb 15.

Abstract

Structural equation modeling (SEM) was applied to positron emission tomographic (PET) images acquired during transcranial magnetic stimulation (TMS) of the primary motor cortex (M1(hand)). TMS was applied across a range of intensities, and responses both at the stimulation site and remotely connected brain regions covaried with stimulus intensity. Regions of interest (ROIs) were identified through an activation likelihood estimation (ALE) meta-analysis of TMS studies. That these ROIs represented the network engaged by motor planning and execution was confirmed by an ALE meta-analysis of finger movement studies. Rather than postulate connections in the form of an a priori model (confirmatory approach), effective connectivity models were developed using a model-generating strategy based on improving tentatively specified models. This strategy exploited the experimentally imposed causal relations: (1) that response variations were caused by stimulation variations, (2) that stimulation was unidirectionally applied to the M1(hand) region, and (3) that remote effects must be caused, either directly or indirectly, by the M1(hand) excitation. The path model thus derived exhibited an exceptional level of goodness (chi(2)=22.150, df=38, P=0.981, TLI=1.0). The regions and connections derived were in good agreement with the known anatomy of the human and primate motor system. The model-generating SEM strategy thus proved highly effective and successfully identified a complex set of causal relationships of motor connectivity.

摘要

结构方程模型(SEM)被应用于在对初级运动皮层(M1(手部))进行经颅磁刺激(TMS)期间获取的正电子发射断层扫描(PET)图像。TMS以一系列强度施加,刺激部位和远程连接的脑区的反应均与刺激强度协变。通过对TMS研究的激活可能性估计(ALE)元分析确定感兴趣区域(ROI)。通过对手指运动研究的ALE元分析证实,这些ROI代表了参与运动计划和执行的网络。不是以先验模型的形式假设连接(验证性方法),而是使用基于改进初步指定模型的模型生成策略来开发有效连接模型。该策略利用了实验施加的因果关系:(1)反应变化是由刺激变化引起的,(2)刺激单向施加于M1(手部)区域,(3)远程效应必须直接或间接地由M1(手部)兴奋引起。由此得出的路径模型表现出异常高的拟合优度(卡方=22.150,自由度=38,P=0.981,TLI=1.0)。得出的区域和连接与人类和灵长类动物运动系统的已知解剖结构高度一致。因此,模型生成的SEM策略被证明非常有效,并成功识别了一组复杂的运动连接因果关系。

相似文献

1
Modeling motor connectivity using TMS/PET and structural equation modeling.
Neuroimage. 2008 Jun;41(2):424-36. doi: 10.1016/j.neuroimage.2008.01.065. Epub 2008 Feb 15.
2
Network connectivity and individual responses to brain stimulation in the human motor system.
Cereb Cortex. 2014 Jul;24(7):1697-707. doi: 10.1093/cercor/bht023. Epub 2013 Feb 8.
3
Repetitive Transcranial Magnetic Stimulation Educes Frequency-Specific Causal Relationships in the Motor Network.
Brain Stimul. 2016 May-Jun;9(3):406-414. doi: 10.1016/j.brs.2016.02.006. Epub 2016 Feb 16.
4
The spontaneous fluctuation of the excitability of a single node modulates the internodes connectivity: a TMS-EEG study.
Hum Brain Mapp. 2014 Apr;35(4):1740-9. doi: 10.1002/hbm.22288. Epub 2013 May 14.
5
Intensity modulation of TMS-induced cortical excitation: primary motor cortex.
Hum Brain Mapp. 2006 Jun;27(6):478-87. doi: 10.1002/hbm.20192.
7
Convergence of human brain mapping tools: neuronavigated TMS parameters and fMRI activity in the hand motor area.
Hum Brain Mapp. 2012 May;33(5):1107-23. doi: 10.1002/hbm.21272. Epub 2011 Apr 21.
9

引用本文的文献

1
A Minimum Bayes Factor Based Threshold for Activation Likelihood Estimation.
Neuroinformatics. 2023 Apr;21(2):365-374. doi: 10.1007/s12021-023-09626-6. Epub 2023 Mar 28.
2
Transcranial magnetic stimulation of the brain: What is stimulated? - A consensus and critical position paper.
Clin Neurophysiol. 2022 Aug;140:59-97. doi: 10.1016/j.clinph.2022.04.022. Epub 2022 May 18.
3
Assessing robustness against potential publication bias in Activation Likelihood Estimation (ALE) meta-analyses for fMRI.
PLoS One. 2018 Nov 30;13(11):e0208177. doi: 10.1371/journal.pone.0208177. eCollection 2018.
4
Changes in Effective Connectivity Network Patterns in Drug Abusers, Treated With Different Methods.
Basic Clin Neurosci. 2017 Jul-Aug;8(4):285-298. doi: 10.18869/nirp.bcn.8.4.285.
5
Progressive Bidirectional Age-Related Changes in Default Mode Network Effective Connectivity across Six Decades.
Front Aging Neurosci. 2016 Jun 14;8:137. doi: 10.3389/fnagi.2016.00137. eCollection 2016.
6
Repetitive Transcranial Magnetic Stimulation Educes Frequency-Specific Causal Relationships in the Motor Network.
Brain Stimul. 2016 May-Jun;9(3):406-414. doi: 10.1016/j.brs.2016.02.006. Epub 2016 Feb 16.
7
Modeling the effective connectivity of the visual network in healthy and photosensitive, epileptic baboons.
Brain Struct Funct. 2016 May;221(4):2023-33. doi: 10.1007/s00429-015-1022-y. Epub 2015 Mar 7.
9
Meta-analysis in human neuroimaging: computational modeling of large-scale databases.
Annu Rev Neurosci. 2014;37:409-34. doi: 10.1146/annurev-neuro-062012-170320.
10
Distant functional connectivity for bimanual finger coordination declines with aging: an fMRI and SEM exploration.
Front Hum Neurosci. 2014 Apr 25;8:251. doi: 10.3389/fnhum.2014.00251. eCollection 2014.

本文引用的文献

1
Bias between MNI and Talairach coordinates analyzed using the ICBM-152 brain template.
Hum Brain Mapp. 2007 Nov;28(11):1194-205. doi: 10.1002/hbm.20345.
2
Activity and effective connectivity of parietal and occipital cortical regions during haptic shape perception.
Neuropsychologia. 2007 Feb 1;45(3):476-83. doi: 10.1016/j.neuropsychologia.2006.03.003. Epub 2006 Apr 17.
3
Learning functional structure from fMR images.
Neuroimage. 2006 Jul 15;31(4):1601-13. doi: 10.1016/j.neuroimage.2006.01.031. Epub 2006 Mar 15.
5
Changes in effective connectivity during incidental and intentional perception of fearful faces.
Neuroimage. 2006 Apr 15;30(3):1030-7. doi: 10.1016/j.neuroimage.2005.10.001. Epub 2005 Nov 3.
6
Intensity modulation of TMS-induced cortical excitation: primary motor cortex.
Hum Brain Mapp. 2006 Jun;27(6):478-87. doi: 10.1002/hbm.20192.
7
A Bayesian approach to determining connectivity of the human brain.
Hum Brain Mapp. 2006 Mar;27(3):267-76. doi: 10.1002/hbm.20182.
8
BrainMap: the social evolution of a human brain mapping database.
Neuroinformatics. 2005;3(1):65-78. doi: 10.1385/ni:3:1:065.
9
ALE meta-analysis: controlling the false discovery rate and performing statistical contrasts.
Hum Brain Mapp. 2005 May;25(1):155-64. doi: 10.1002/hbm.20136.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验