Laird Angela R, Fox P Mickle, Price Cathy J, Glahn David C, Uecker Angela M, Lancaster Jack L, Turkeltaub Peter E, Kochunov Peter, Fox Peter T
Research Imaging Center, University of Texas Health Science Center, San Antonio, Texas 78229-3900, USA.
Hum Brain Mapp. 2005 May;25(1):155-64. doi: 10.1002/hbm.20136.
Activation likelihood estimation (ALE) has greatly advanced voxel-based meta-analysis research in the field of functional neuroimaging. We present two improvements to the ALE method. First, we evaluate the feasibility of two techniques for correcting for multiple comparisons: the single threshold test and a procedure that controls the false discovery rate (FDR). To test these techniques, foci from four different topics within the literature were analyzed: overt speech in stuttering subjects, the color-word Stroop task, picture-naming tasks, and painful stimulation. In addition, the performance of each thresholding method was tested on randomly generated foci. We found that the FDR method more effectively controls the rate of false positives in meta-analyses of small or large numbers of foci. Second, we propose a technique for making statistical comparisons of ALE meta-analyses and investigate its efficacy on different groups of foci divided by task or response type and random groups of similarly obtained foci. We then give an example of how comparisons of this sort may lead to advanced designs in future meta-analytic research.
激活可能性估计(ALE)极大地推动了功能神经影像学领域基于体素的元分析研究。我们对ALE方法提出了两点改进。首先,我们评估了两种用于多重比较校正技术的可行性:单阈值检验和控制错误发现率(FDR)的程序。为了测试这些技术,我们分析了文献中四个不同主题的焦点:口吃受试者的公开言语、颜色词斯特鲁普任务、图片命名任务和疼痛刺激。此外,还在随机生成的焦点上测试了每种阈值方法的性能。我们发现,FDR方法在小数量或大数量焦点的元分析中能更有效地控制假阳性率。其次,我们提出了一种对ALE元分析进行统计比较的技术,并研究了其在按任务或反应类型划分的不同焦点组以及类似获得的焦点随机组上的功效。然后,我们给出一个示例,说明这种比较如何可能导致未来元分析研究中的先进设计。