Suppr超能文献

可交联聚富马酸丙二醇酯/羟基磷灰石纳米复合材料的物理性质及细胞反应

Physical properties and cellular responses to crosslinkable poly(propylene fumarate)/hydroxyapatite nanocomposites.

作者信息

Lee Kee-Won, Wang Shanfeng, Yaszemski Michael J, Lu Lichun

机构信息

Department of Orthopedic Surgery, Mayo Clinic College of Medicine, MN 55905, United States.

出版信息

Biomaterials. 2008 Jul;29(19):2839-48. doi: 10.1016/j.biomaterials.2008.03.030. Epub 2008 Apr 9.

Abstract

A series of crosslinkable nanocomposites has been developed using hydroxyapatite (HA) nanoparticles and poly(propylene fumarate) (PPF). PPF/HA nanocomposites with four different weight fractions of HA nanoparticles have been characterized in terms of thermal and mechanical properties. To assess surface chemistry of crosslinked PPF/HA nanocomposites, their hydrophilicity and capability of adsorbing proteins have been determined using static contact angle measurement and MicroBCA protein assay kit after incubation with 10% fetal bovine serum (FBS), respectively. In vitro cell studies have been performed using MC3T3-E1 mouse pre-osteoblast cells to investigate the ability of PPF/HA nanocomposites to support cell attachment, spreading, and proliferation after 1, 4, and 7 days. By adding HA nanoparticles to PPF, the mechanical properties of crosslinked PPF/HA nanocomposites have not been increased due to the initially high modulus of crosslinked PPF. However, hydrophilicity and serum protein adsorption on the surface of nanocomposites have been significantly increased, resulting in enhanced cell attachment, spreading, and proliferation after 4 days of cell seeding. These results indicate that crosslinkable PPF/HA nanocomposites are useful for hard tissue replacement because of excellent mechanical strength and osteoconductivity.

摘要

利用羟基磷灰石(HA)纳米颗粒和聚富马酸丙二醇酯(PPF)开发了一系列可交联的纳米复合材料。对具有四种不同重量分数HA纳米颗粒的PPF/HA纳米复合材料的热性能和力学性能进行了表征。为了评估交联PPF/HA纳米复合材料的表面化学性质,分别使用静态接触角测量和MicroBCA蛋白质检测试剂盒,在与10%胎牛血清(FBS)孵育后,测定了它们的亲水性和吸附蛋白质的能力。使用MC3T3-E1小鼠前成骨细胞进行了体外细胞研究,以研究PPF/HA纳米复合材料在1、4和7天后支持细胞附着、铺展和增殖的能力。通过向PPF中添加HA纳米颗粒,由于交联PPF最初具有较高的模量,交联PPF/HA纳米复合材料的力学性能并未提高。然而,纳米复合材料表面的亲水性和血清蛋白吸附显著增加,导致细胞接种4天后细胞附着、铺展和增殖增强。这些结果表明,可交联的PPF/HA纳米复合材料因其优异的机械强度和骨传导性而可用于硬组织替代。

相似文献

1
Physical properties and cellular responses to crosslinkable poly(propylene fumarate)/hydroxyapatite nanocomposites.
Biomaterials. 2008 Jul;29(19):2839-48. doi: 10.1016/j.biomaterials.2008.03.030. Epub 2008 Apr 9.
2
Strontium-substituted hydroxyapatite stimulates osteogenesis on poly(propylene fumarate) nanocomposite scaffolds.
J Biomed Mater Res A. 2019 Mar;107(3):631-642. doi: 10.1002/jbm.a.36579. Epub 2018 Nov 25.
3
Extrusion-based 3D printing of poly(propylene fumarate) scaffolds with hydroxyapatite gradients.
J Biomater Sci Polym Ed. 2017 Apr;28(6):532-554. doi: 10.1080/09205063.2017.1286184. Epub 2017 Feb 5.
4
Poly(Propylene Fumarate)-Hydroxyapatite Nanocomposite Can Be a Suitable Candidate for Cervical Cages.
J Biomech Eng. 2018 Oct 1;140(10):1010091-8. doi: 10.1115/1.4040458.
5
Poly(ethylene glycol)-grafted poly(propylene fumarate) networks and parabolic dependence of MC3T3 cell behavior on the network composition.
Biomaterials. 2010 Jun;31(16):4457-66. doi: 10.1016/j.biomaterials.2010.02.020. Epub 2010 Mar 4.
8
In vitro study of a new biodegradable nanocomposite based on poly propylene fumarate as bone glue.
Mater Sci Eng C Mater Biol Appl. 2016 Dec 1;69:1201-9. doi: 10.1016/j.msec.2016.08.035. Epub 2016 Aug 14.
10
Bioactive, mechanically favorable, and biodegradable copolymer nanocomposites for orthopedic applications.
Mater Sci Eng C Mater Biol Appl. 2014 Jun 1;39:150-60. doi: 10.1016/j.msec.2014.02.031. Epub 2014 Feb 24.

引用本文的文献

1
3D-Printed Polymeric Biomaterials for Health Applications.
Adv Healthc Mater. 2025 Jan;14(1):e2402571. doi: 10.1002/adhm.202402571. Epub 2024 Nov 5.
2
Digital light processing printed hydrogel scaffolds with adjustable modulus.
Sci Rep. 2024 Jul 8;14(1):15695. doi: 10.1038/s41598-024-66507-x.
3
Tissue Engineering Bionanocomposites Based on Poly(propylene fumarate).
Polymers (Basel). 2017 Jun 30;9(7):260. doi: 10.3390/polym9070260.
4
Strontium-substituted hydroxyapatite stimulates osteogenesis on poly(propylene fumarate) nanocomposite scaffolds.
J Biomed Mater Res A. 2019 Mar;107(3):631-642. doi: 10.1002/jbm.a.36579. Epub 2018 Nov 25.
5
Surface modification of biomaterials and biomedical devices using additive manufacturing.
Acta Biomater. 2018 Jan 15;66:6-22. doi: 10.1016/j.actbio.2017.11.003. Epub 2017 Nov 3.
6
Extrusion-based 3D printing of poly(propylene fumarate) scaffolds with hydroxyapatite gradients.
J Biomater Sci Polym Ed. 2017 Apr;28(6):532-554. doi: 10.1080/09205063.2017.1286184. Epub 2017 Feb 5.
7
3D Printing of Calcium Phosphate Ceramics for Bone Tissue Engineering and Drug Delivery.
Ann Biomed Eng. 2017 Jan;45(1):23-44. doi: 10.1007/s10439-016-1678-3. Epub 2016 Jun 20.
9
A New Bioactive Polylactide-based Composite with High Mechanical Strength.
Colloids Surf A Physicochem Eng Asp. 2014 Sep 5;457:256-262. doi: 10.1016/j.colsurfa.2014.05.047.
10
A Rheological Study of Biodegradable Injectable PEGMC/HA Composite Scaffolds.
Soft Matter. 2012;8(5):1499-1507. doi: 10.1039/C1SM05786C.

本文引用的文献

3
Suppression of apoptosis by enhanced protein adsorption on polymer/hydroxyapatite composite scaffolds.
Biomaterials. 2007 Jun;28(16):2622-30. doi: 10.1016/j.biomaterials.2007.02.004. Epub 2007 Feb 11.
4
Three-dimensional growth behavior of osteoblasts on biomimetic hydroxylapatite scaffolds.
J Biomed Mater Res A. 2007 Apr;81(1):40-50. doi: 10.1002/jbm.a.30940.
5
A poly(lactide-co-glycolide)/hydroxyapatite composite scaffold with enhanced osteoconductivity.
J Biomed Mater Res A. 2007 Jan;80(1):206-15. doi: 10.1002/jbm.a.30836.
6
Poly-epsilon-caprolactone/hydroxyapatite for tissue engineering scaffold fabrication via selective laser sintering.
Acta Biomater. 2007 Jan;3(1):1-12. doi: 10.1016/j.actbio.2006.07.008. Epub 2006 Oct 20.
8
Combinatorial screen of the effect of surface energy on fibronectin-mediated osteoblast adhesion, spreading and proliferation.
Biomaterials. 2006 Jul;27(20):3817-24. doi: 10.1016/j.biomaterials.2006.02.044. Epub 2006 Mar 24.
9
Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering.
Biomaterials. 2006 Jun;27(18):3413-31. doi: 10.1016/j.biomaterials.2006.01.039. Epub 2006 Feb 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验