de Sanctis Ugo, Loiacono Carlotta, Richiardi Lorenzo, Turco Davide, Mutani Bernardo, Grignolo Federico M
Department of Clinical Physiopathology, Ophthalmology Institute, University of Turin, Turin, Italy.
Ophthalmology. 2008 Sep;115(9):1534-9. doi: 10.1016/j.ophtha.2008.02.020. Epub 2008 Apr 11.
To estimate the sensitivity and specificity of posterior elevation in discriminating keratoconus and subclinical keratoconus from normal corneas.
Prospective case-control study.
Seventy-five patients with keratoconus, 25 with subclinical keratoconus, and 64 refractive surgery candidates with normal corneas.
In one eye of each patient, posterior corneal elevation was measured in the central 5 mm using the Pentacam rotating Scheimpflug camera (Oculus, Wetzlar, Germany). Posterior corneal elevation in keratoconus and subclinical keratoconus were compared with that in normal corneas in separate analyses. Receiver operating characteristic (ROC) curves were used to determine the test's overall predictive accuracy (area under the curve) and to identify optimal posterior corneal elevation cutoff points to maximize sensitivity and specificity in discriminating keratoconus and subclinical keratoconus from normal corneas. Logistic regression was used to support cutoff points identified through ROC curve analysis, and to check for model validity; model goodness-of-fit was estimated using r(2), and its internal validation was by bootstrapping analysis.
Posterior corneal elevation in keratoconus, subclinical keratoconus, and normal corneas.
Mean posterior corneal elevation was statistically higher in keratoconus (100.7+/-49.2 microm; P<0.001), and subclinical keratoconus (39.9+/-15.0 microm; P = 0.01) versus normal corneas (19.8+/-6.37 microm). ROC curve analyses showed high overall predictive accuracy of posterior elevation for both keratoconus and subclinical keratoconus (area under the curve 0.99 and 0.93, respectively). Optimal cutoff points were 35 microm for keratoconus and 29 microm for subclinical keratoconus. These values were associated with sensitivity and specificity of 97.3% and 96.9%, respectively, for keratoconus, and 68% and 90.8% for subclinical keratoconus. Similar cutoff points were obtained with logistic regression analysis (38 microm for keratoconus and 32 microm for subclinical keratoconus). The models showed good fit to the data, including after internal validation.
Posterior corneal elevation very effectively discriminates keratoconus from normal corneas. Its efficacy is lower for subclinical keratoconus, and thus data concerning posterior elevation should not be used alone to stratify patients with this condition.
评估后表面抬高在鉴别圆锥角膜和亚临床圆锥角膜与正常角膜方面的敏感性和特异性。
前瞻性病例对照研究。
75例圆锥角膜患者、25例亚临床圆锥角膜患者以及64例角膜正常的屈光手术候选者。
使用Pentacam旋转式Scheimpflug相机(德国韦茨拉尔奥culus公司)测量每位患者一只眼中中央5mm区域的角膜后表面抬高。在单独分析中,将圆锥角膜和亚临床圆锥角膜的角膜后表面抬高与正常角膜的进行比较。采用受试者操作特征(ROC)曲线来确定该检查的总体预测准确性(曲线下面积),并确定最佳角膜后表面抬高截断点,以在鉴别圆锥角膜和亚临床圆锥角膜与正常角膜时最大化敏感性和特异性。使用逻辑回归来支持通过ROC曲线分析确定的截断点,并检查模型的有效性;使用r²估计模型的拟合优度,通过自抽样分析进行内部验证。
圆锥角膜、亚临床圆锥角膜和正常角膜的角膜后表面抬高。
圆锥角膜(100.7±49.2微米;P<0.001)和亚临床圆锥角膜(39.9±15.0微米;P = 0.01)的平均角膜后表面抬高在统计学上高于正常角膜(19.8±6.37微米)。ROC曲线分析显示,角膜后表面抬高对圆锥角膜和亚临床圆锥角膜均具有较高的总体预测准确性(曲线下面积分别为0.99和0.93)。圆锥角膜的最佳截断点为35微米,亚临床圆锥角膜为29微米。这些值对应的圆锥角膜敏感性和特异性分别为97.3%和96.9%,亚临床圆锥角膜为68%和90.8%。逻辑回归分析得到了类似的截断点(圆锥角膜为38微米,亚临床圆锥角膜为32微米)。这些模型对数据显示出良好的拟合度,包括内部验证后。
角膜后表面抬高能非常有效地鉴别圆锥角膜与正常角膜。其对亚临床圆锥角膜的鉴别效能较低,因此关于角膜后表面抬高的数据不应单独用于对患有这种情况的患者进行分层。