Suppr超能文献

使用离群值推断的稳健组分析。

Robust group analysis using outlier inference.

作者信息

Woolrich Mark

机构信息

Oxford Centre for Functional Magnetic Resonance Imaging of the Brain, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK.

出版信息

Neuroimage. 2008 Jun;41(2):286-301. doi: 10.1016/j.neuroimage.2008.02.042. Epub 2008 Mar 6.

Abstract

Neuroimaging group studies are typically performed with the assumption that subjects used are randomly drawn from a population of subjects. The population of subjects is assumed to have a distribution of effect sizes associated with it that are Gaussian distributed. However, in practice, group studies can include "outlier" subjects whose effect sizes are completely at odds with the general population for reasons that are not of experimental interest. If ignored, these outliers can dramatically affect the inference results. To solve this problem, we propose a group inference approach which includes inference of outliers using a robust general linear model (GLM) approach. This approach models the errors as being a mixture of two Gaussian distributions, one for the normal population and one for the outliers. Crucially the robust GLM is part of a traditional hierarchical group model which uses GLMs at each level of the hierarchy. This combines the benefits of outlier inference with the benefits of using variance information from lower levels in the hierarchy. A Bayesian inference framework is used to infer on the robust GLM, while using the lower level variance information. The performance of the method is demonstrated on simulated and fMRI data and is compared with iterative reweighted least squares and permutation testing.

摘要

神经影像学组研究通常在这样的假设下进行,即所使用的受试者是从受试者总体中随机抽取的。假定受试者总体具有与之相关的效应大小分布,且这些效应大小呈高斯分布。然而,在实际中,组研究可能会包括“离群值”受试者,其效应大小与总体人群完全不同,原因并非实验所关注的。如果忽略这些离群值,它们可能会显著影响推断结果。为了解决这个问题,我们提出了一种组推断方法,该方法包括使用稳健广义线性模型(GLM)方法对离群值进行推断。这种方法将误差建模为两个高斯分布的混合,一个用于正常总体,一个用于离群值。至关重要的是稳健GLM是传统分层组模型的一部分,该模型在层次结构的每个级别都使用GLM。这将离群值推断的好处与使用层次结构中较低级别方差信息的好处结合起来。使用贝叶斯推断框架对稳健GLM进行推断,同时使用较低级别的方差信息。该方法的性能在模拟数据和功能磁共振成像(fMRI)数据上得到了验证,并与迭代加权最小二乘法和置换检验进行了比较。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验