Suppr超能文献

嗅觉小球之间的抑制性相互作用不一定反映空间上的接近程度。

Inhibitory interactions among olfactory glomeruli do not necessarily reflect spatial proximity.

作者信息

Reisenman Carolina E, Heinbockel Thomas, Hildebrand John G

机构信息

Arizona Research Laboratories, Division of Neurobiology, University of Arizona, PO Box 210077, Tucson, AZ 85721-0077, USA.

出版信息

J Neurophysiol. 2008 Aug;100(2):554-64. doi: 10.1152/jn.90231.2008. Epub 2008 Apr 16.

Abstract

Inhibitory interactions shape the activity of output neurons in primary olfactory centers and promote contrast enhancement of odor representations. Patterns of interglomerular connectivity, however, are largely unknown. To test whether the proximity of glomeruli to one another is correlated with interglomerular inhibitory interactions, we used intracellular recording and staining methods to record the responses of projection (output) neurons (PNs) associated with glomeruli of known olfactory tuning in the primary olfactory center of the moth Manduca sexta. We focused on Toroid I, a glomerulus in the male-specific macroglomerular complex (MGC) specialized to one of the two key components of the conspecific females' sex pheromone, and the adjacent, sexually isomorphic glomerulus 35, which is highly sensitive to Z-3-hexenyl acetate (Z3-6:OAc). We used the two odorants to activate these reference glomeruli and tested the effects of olfactory activation in other glomeruli. We found that Toroid-I PNs were not inhibited by input to G35, whereas G35 PNs were inhibited by input to Toroid-I PNs. We also recorded the responses of PNs arborizing in other sexually isomorphic glomeruli to stimulation with the sex pheromone and Z3-6:OAc. We found that inhibitory responses were not related to proximity to the MGC and G35: both distant and adjacent PNs were inhibited by stimulation with the sex pheromone, some others were affected by only one odorant, and yet others by neither. Similar results were obtained in female PNs recorded in proximity to female-specific glomeruli. Our findings indicate that inhibitory interactions among glomeruli are widespread and independent of their spatial proximity.

摘要

抑制性相互作用塑造了初级嗅觉中枢中输出神经元的活动,并促进了气味表征的对比度增强。然而,球状体间的连接模式在很大程度上尚不清楚。为了测试球状体彼此之间的接近程度是否与球状体间的抑制性相互作用相关,我们使用细胞内记录和染色方法,记录了与烟草天蛾初级嗅觉中枢中已知嗅觉调谐的球状体相关的投射(输出)神经元(PNs)的反应。我们聚焦于环形I,它是雄性特异性大球状体复合体(MGC)中的一个球状体,专门负责同种雌性性信息素两个关键成分之一,以及相邻的、性别同构的球状体35,它对乙酸Z-3-己烯酯(Z3-6:OAc)高度敏感。我们使用这两种气味剂激活这些参考球状体,并测试其他球状体中嗅觉激活的效果。我们发现,环形I的PNs不会被输入到球状体35的信号抑制,而球状体35的PNs会被输入到环形I的PNs的信号抑制。我们还记录了在其他性别同构球状体中分支的PNs对性信息素和Z3-6:OAc刺激的反应。我们发现,抑制性反应与靠近MGC和球状体35无关:远处和相邻的PNs都会被性信息素刺激所抑制,其他一些只受一种气味剂影响,还有一些则不受任何影响。在靠近雌性特异性球状体记录的雌性PNs中也获得了类似的结果。我们的研究结果表明,球状体之间的抑制性相互作用广泛存在,且与其空间接近程度无关。

相似文献

1
Inhibitory interactions among olfactory glomeruli do not necessarily reflect spatial proximity.
J Neurophysiol. 2008 Aug;100(2):554-64. doi: 10.1152/jn.90231.2008. Epub 2008 Apr 16.
2
Chemosensory selectivity of output neurons innervating an identified, sexually isomorphic olfactory glomerulus.
J Neurosci. 2005 Aug 31;25(35):8017-26. doi: 10.1523/JNEUROSCI.1314-05.2005.
3
Representation of binary pheromone blends by glomerulus-specific olfactory projection neurons.
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2004 Dec;190(12):1023-37. doi: 10.1007/s00359-004-0559-7. Epub 2004 Sep 17.
6
7
Response characteristics of an identified, sexually dimorphic olfactory glomerulus.
J Neurosci. 2000 Mar 15;20(6):2391-9. doi: 10.1523/JNEUROSCI.20-06-02391.2000.
8
Effect of Interglomerular Inhibitory Networks on Olfactory Bulb Odor Representations.
J Neurosci. 2020 Jul 29;40(31):5954-5969. doi: 10.1523/JNEUROSCI.0233-20.2020. Epub 2020 Jun 19.
9
Olfactory activation patterns in the antennal lobe of the sphinx moth, Manduca sexta.
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2003 Apr;189(4):301-8. doi: 10.1007/s00359-003-0403-5. Epub 2003 Mar 13.
10
Synchronous firing of antennal-lobe projection neurons encodes the behaviorally effective ratio of sex-pheromone components in male Manduca sexta.
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2013 Nov;199(11):963-79. doi: 10.1007/s00359-013-0849-z. Epub 2013 Sep 4.

引用本文的文献

1
Coincidence of pheromone and plant odor leads to sensory plasticity in the heliothine olfactory system.
PLoS One. 2017 May 3;12(5):e0175513. doi: 10.1371/journal.pone.0175513. eCollection 2017.
2
Neuroethology of Olfactory-Guided Behavior and Its Potential Application in the Control of Harmful Insects.
Front Physiol. 2016 Jun 30;7:271. doi: 10.3389/fphys.2016.00271. eCollection 2016.
3
The neural bases of host plant selection in a Neuroecology framework.
Front Physiol. 2015 Aug 12;6:229. doi: 10.3389/fphys.2015.00229. eCollection 2015.
4
Unexpected plant odor responses in a moth pheromone system.
Front Physiol. 2015 May 12;6:148. doi: 10.3389/fphys.2015.00148. eCollection 2015.
5
Data-driven inference of network connectivity for modeling the dynamics of neural codes in the insect antennal lobe.
Front Comput Neurosci. 2014 Aug 13;8:70. doi: 10.3389/fncom.2014.00070. eCollection 2014.
6
Olfactory coding in the insect brain: data and conjectures.
Eur J Neurosci. 2014 Jun;39(11):1784-95. doi: 10.1111/ejn.12558. Epub 2014 Apr 3.
7
Glomerular interactions in olfactory processing channels of the antennal lobes.
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2013 Nov;199(11):929-46. doi: 10.1007/s00359-013-0842-6. Epub 2013 Jul 28.
8
Neuronal processing of complex mixtures establishes a unique odor representation in the moth antennal lobe.
Front Neural Circuits. 2011 May 11;5:7. doi: 10.3389/fncir.2011.00007. eCollection 2011.
9
Local interneuron diversity in the primary olfactory center of the moth Manduca sexta.
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2011 Jun;197(6):653-65. doi: 10.1007/s00359-011-0625-x. Epub 2011 Feb 1.
10
Innate recognition of pheromone and food odors in moths: a common mechanism in the antennal lobe?
Front Behav Neurosci. 2010 Sep 24;4. doi: 10.3389/fnbeh.2010.00159. eCollection 2010.

本文引用的文献

1
Lateral presynaptic inhibition mediates gain control in an olfactory circuit.
Nature. 2008 Apr 24;452(7190):956-60. doi: 10.1038/nature06864. Epub 2008 Mar 16.
3
Propagation of olfactory information in Drosophila.
Proc Natl Acad Sci U S A. 2007 Jul 10;104(28):11826-31. doi: 10.1073/pnas.0704523104. Epub 2007 Jun 27.
4
Excitatory interactions between olfactory processing channels in the Drosophila antennal lobe.
Neuron. 2007 Apr 5;54(1):89-103. doi: 10.1016/j.neuron.2007.03.010.
6
Coding of odors by a receptor repertoire.
Cell. 2006 Apr 7;125(1):143-60. doi: 10.1016/j.cell.2006.01.050.
7
Synchronization of olfactory bulb mitral cells by precisely timed inhibitory inputs.
Neuron. 2006 Jan 19;49(2):271-83. doi: 10.1016/j.neuron.2005.11.038.
8
Interglomerular center-surround inhibition shapes odorant-evoked input to the mouse olfactory bulb in vivo.
J Neurophysiol. 2006 Mar;95(3):1881-7. doi: 10.1152/jn.00918.2005. Epub 2005 Nov 30.
9
Role of GABAergic inhibition in shaping odor-evoked spatiotemporal patterns in the Drosophila antennal lobe.
J Neurosci. 2005 Oct 5;25(40):9069-79. doi: 10.1523/JNEUROSCI.2070-05.2005.
10
Chemosensory selectivity of output neurons innervating an identified, sexually isomorphic olfactory glomerulus.
J Neurosci. 2005 Aug 31;25(35):8017-26. doi: 10.1523/JNEUROSCI.1314-05.2005.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验