Xi Yuanxin, de Ropp Jeffrey S, Viant Mark R, Woodruff David L, Yu Ping
Department of Applied Science, University of California, Davis, Davis, CA 95616, USA.
Anal Chim Acta. 2008 May 5;614(2):127-33. doi: 10.1016/j.aca.2008.03.024. Epub 2008 Mar 16.
The automated and robust identification of metabolites in a complex biological sample remains one of the greatest challenges in metabolomics. In our experiments, HSQC carbon-proton correlation NMR data with a model that takes intensity information into account improves upon the identification of metabolites that was achieved using COSY proton-proton correlation NMR data with the binary model of [Y. Xi, J.S. de Ropp, M.R. Viant, D.L. Woodruff, P. Yu, Metabolomics, 2 (2006) 221-233]. In addition, using intensity information results in easier-to-interpret "grey areas" for cases where it is not clear if the compound might be present. We report on highly successful experiments that identify compounds in chemically defined mixtures as well as in biological samples, and compare our two-dimensional HSQC analyses against quantification of metabolites in the corresponding one-dimensional proton NMR spectra. We show that our approach successfully employs a fully automated algorithm for identifying the presence or absence of predefined compounds (held within a library) in biological HSQC spectra, and in addition calculates upper bounds on the compound intensities.
在复杂生物样品中实现代谢物的自动且可靠鉴定仍是代谢组学领域最大的挑战之一。在我们的实验中,使用考虑强度信息的模型的HSQC碳 - 质子相关核磁共振数据,相比使用[Y. Xi, J.S. de Ropp, M.R. Viant, D.L. Woodruff, P. Yu, Metabolomics, 2 (2006) 221 - 233]的二元模型的COSY质子 - 质子相关核磁共振数据,在代谢物鉴定方面有了改进。此外,利用强度信息会产生更易于解释的“灰色区域”,用于判断化合物是否可能存在但情况不明的情形。我们报告了在化学定义混合物以及生物样品中鉴定化合物的非常成功的实验,并将我们的二维HSQC分析与相应一维质子核磁共振谱中的代谢物定量分析进行了比较。我们表明,我们的方法成功采用了一种全自动算法来鉴定生物HSQC谱中预定义化合物(存于库中)的存在与否,并且还计算了化合物强度的上限。