Castro Henry, Garcia-Racines Juan D, Bernal-Norena Alvaro
Universidad Santiago de Cali, Calle 5 No.62-00 Cali, Colombia.
Universidad del Valle, Calle 13 No. 100-00 Cali, Colombia.
Heliyon. 2021 Oct 23;7(11):e08244. doi: 10.1016/j.heliyon.2021.e08244. eCollection 2021 Nov.
Atrial fibrillation (AF) is the most clinically diagnosed arrhythmia, as its prevalence increases with age, and its initial stage is paroxysmal atrial fibrillation (PAF). This pathology usually triggers hemodynamic disorders that can generate cerebrovascular accidents (CVA), causing morbidity and even death. The aim of this study is to predict the occurrence of PAF episodes in order to take precautions to prevent PAF episodes. The PhysioNet AFPDB prediction database was used to extract 77 heart rate variability (HRV) features using time domain, geometrical analysis, Poincaré plot, nonlinear analysis, detrended fluctuation analysis, autoregressive modeling, fast Fourier transform (FFT), Lomb-Scargle periodogram, wavelet packet transform (WPT) and bispectrum measurements. The number of features was reduced using the near-zero value, correlation, and recursive feature elimination (RFE) methods for time windows of 1, 2, 5, 10, and 30 min. Feature selection was performed using backwards selection, genetic algorithm, analysis of variance (ANOVA), and non-dominated sorting genetic algorithm (NSGA-III) methods, and then random forest, conditional random forest, k-nearest neighbor (KNN), and support vector machine (SVM) classification algorithms were applied and evaluated using 10-fold cross-validation. The proposed method achieved a precision of 93.24% with a 5-minute window and 89.21% with a 2-minute window, improving performance in predicting PAF when compared with similar studies in the literature.
心房颤动(AF)是临床上诊断最多的心律失常,其患病率随年龄增长而增加,其初始阶段为阵发性心房颤动(PAF)。这种病症通常会引发血流动力学紊乱,进而可能导致脑血管意外(CVA),造成发病甚至死亡。本研究的目的是预测PAF发作的发生,以便采取预防措施防止PAF发作。使用PhysioNet AFPDB预测数据库,通过时域、几何分析、庞加莱图、非线性分析、去趋势波动分析、自回归建模、快速傅里叶变换(FFT)、Lomb-Scargle周期图、小波包变换(WPT)和双谱测量提取77个心率变异性(HRV)特征。使用近零值、相关性和递归特征消除(RFE)方法对1、2、5、10和30分钟的时间窗口进行特征数量缩减。使用向后选择、遗传算法、方差分析(ANOVA)和非支配排序遗传算法(NSGA-III)方法进行特征选择,然后应用随机森林、条件随机森林、k近邻(KNN)和支持向量机(SVM)分类算法,并使用10折交叉验证进行评估。所提出的方法在5分钟窗口时达到了93.24%的精度,在2分钟窗口时达到了89.21%的精度,与文献中的类似研究相比,在预测PAF方面提高了性能。