Brijs Tom, Karlis Dimitris, Wets Geert
Transportation Research Institute, Hasselt University, Wetenschapspark 5 - gebouw 6, B-3590 Diepenbeek, Belgium.
Accid Anal Prev. 2008 May;40(3):1180-90. doi: 10.1016/j.aap.2008.01.001. Epub 2008 Feb 4.
In previous research, significant effects of weather conditions on car crashes have been found. However, most studies use monthly or yearly data and only few studies are available analyzing the impact of weather conditions on daily car crash counts. Furthermore, the studies that are available on a daily level do not explicitly model the data in a time-series context, hereby ignoring the temporal serial correlation that may be present in the data. In this paper, we introduce an integer autoregressive model for modelling count data with time interdependencies. The model is applied to daily car crash data, metereological data and traffic exposure data from the Netherlands aiming at examining the risk impact of weather conditions on the observed counts. The results show that several assumptions related to the effect of weather conditions on crash counts are found to be significant in the data and that if serial temporal correlation is not accounted for in the model, this may produce biased results.
在先前的研究中,已发现天气状况对汽车碰撞事故有显著影响。然而,大多数研究使用的是月度或年度数据,仅有少数研究分析天气状况对每日汽车碰撞事故数量的影响。此外,现有的关于每日层面的研究并未在时间序列背景下对数据进行明确建模,从而忽略了数据中可能存在的时间序列相关性。在本文中,我们引入了一个整数自回归模型,用于对具有时间相依性的计数数据进行建模。该模型应用于来自荷兰的每日汽车碰撞事故数据、气象数据和交通暴露数据,旨在检验天气状况对观测到的事故数量的风险影响。结果表明,与天气状况对碰撞事故数量的影响相关的几个假设在数据中被发现具有显著性,并且如果在模型中不考虑序列时间相关性,这可能会产生有偏差的结果。