Suppr超能文献

在一个计算细胞运动模型中耦合肌动蛋白流、黏附及形态。

Coupling actin flow, adhesion, and morphology in a computational cell motility model.

机构信息

Center for Theoretical Biological Physics and Department of Physics, University of California, San Diego, La Jolla, CA 92093-0374, USA.

出版信息

Proc Natl Acad Sci U S A. 2012 May 1;109(18):6851-6. doi: 10.1073/pnas.1203252109. Epub 2012 Apr 9.

Abstract

Cell migration is a pervasive process in many biology systems and involves protrusive forces generated by actin polymerization, myosin dependent contractile forces, and force transmission between the cell and the substrate through adhesion sites. Here we develop a computational model for cell motion that uses the phase-field method to solve for the moving boundary with physical membrane properties. It includes a reaction-diffusion model for the actin-myosin machinery and discrete adhesion sites which can be in a "gripping" or "slipping" mode and integrates the adhesion dynamics with the dynamics of the actin filaments, modeled as a viscous network. To test this model, we apply it to fish keratocytes, fast moving cells that maintain their morphology, and show that we are able to reproduce recent experimental results on actin flow and stress patterns. Furthermore, we explore the phase diagram of cell motility by varying myosin II activity and adhesion strength. Our model suggests that the pattern of the actin flow inside the cell, the cell velocity, and the cell morphology are determined by the integration of actin polymerization, myosin contraction, adhesion forces, and membrane forces.

摘要

细胞迁移是许多生物学系统中普遍存在的过程,涉及到由肌动蛋白聚合产生的突起力、肌球蛋白依赖性收缩力以及通过黏附位点在细胞和基质之间传递的力。在这里,我们开发了一种用于细胞运动的计算模型,该模型使用相场方法来求解具有物理膜性质的运动边界。它包括一个用于肌动球蛋白机械的反应扩散模型和离散的黏附位点,这些黏附位点可以处于“夹持”或“滑动”模式,并将黏附动力学与肌动蛋白丝的动力学结合起来,将肌动蛋白丝建模为粘性网络。为了测试这个模型,我们将其应用于快速移动的鱼角膜细胞,这些细胞能够保持其形态,并展示了我们能够重现最近关于肌动蛋白流和应力模式的实验结果。此外,我们通过改变肌球蛋白 II 的活性和黏附强度来探索细胞迁移的相图。我们的模型表明,细胞内肌动蛋白流的模式、细胞速度和细胞形态是由肌动蛋白聚合、肌球蛋白收缩、黏附力和膜力的整合决定的。

相似文献

2
Force transmission in migrating cells.迁移细胞中的力传递。
J Cell Biol. 2010 Jan 25;188(2):287-97. doi: 10.1083/jcb.200906139.
4
A free-boundary model of a motile cell explains turning behavior.一个运动细胞的自由边界模型解释了转向行为。
PLoS Comput Biol. 2017 Nov 14;13(11):e1005862. doi: 10.1371/journal.pcbi.1005862. eCollection 2017 Nov.
6
Causes of retrograde flow in fish keratocytes.鱼类角膜细胞中逆向流动的原因。
Cytoskeleton (Hoboken). 2014 Jan;71(1):24-35. doi: 10.1002/cm.21151. Epub 2013 Nov 7.

引用本文的文献

1
Inferring Nonlinear Dynamics of Cell Migration.推断细胞迁移的非线性动力学
PRX Life. 2024 Oct-Dec;2(4). doi: 10.1103/prxlife.2.043020. Epub 2024 Dec 20.
3
Mesenchymal cell migration on one-dimensional micropatterns.间充质细胞在一维微图案上的迁移。
Front Cell Dev Biol. 2024 Apr 16;12:1352279. doi: 10.3389/fcell.2024.1352279. eCollection 2024.
5
The physics of heart rhythm disorders.心律失常的物理学
Phys Rep. 2022 Sep 19;978:1-45. doi: 10.1016/j.physrep.2022.06.003. Epub 2022 Jul 6.

本文引用的文献

1
Model for self-polarization and motility of keratocyte fragments.角膜细胞碎片的自极化和运动模型。
J R Soc Interface. 2012 May 7;9(70):1084-92. doi: 10.1098/rsif.2011.0433. Epub 2011 Oct 19.
3
Mechanisms of Cell Propulsion by Active Stresses.主动应力驱动细胞推进的机制
New J Phys. 2011 Jul 1;13. doi: 10.1088/1367-2630/13/7/073009.
6
Leading-edge-gel coupling in lamellipodium motion.片足运动中的前沿凝胶耦合
Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Nov;82(5 Pt 1):051925. doi: 10.1103/PhysRevE.82.051925. Epub 2010 Nov 18.
7
Computational model for cell morphodynamics.细胞形态动力学的计算模型。
Phys Rev Lett. 2010 Sep 3;105(10):108104. doi: 10.1103/PhysRevLett.105.108104. Epub 2010 Sep 2.
8
Dendritic actin filament nucleation causes traveling waves and patches.树突状肌动蛋白丝成核导致波状运动和斑块。
Phys Rev Lett. 2010 Jun 4;104(22):228102. doi: 10.1103/PhysRevLett.104.228102. Epub 2010 Jun 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验