Rogers Gregory C, Rusan Nasser M, Peifer Mark, Rogers Stephen L
Department of Biology, Lineberger Comprehensive Cancer Center, and Carolina Center for Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
Mol Biol Cell. 2008 Jul;19(7):3163-78. doi: 10.1091/mbc.e07-10-1069. Epub 2008 May 7.
In animal cells, centrosomes nucleate microtubules that form polarized arrays to organize the cytoplasm. Drosophila presents an interesting paradox however, as centrosome-deficient mutant animals develop into viable adults. To understand this discrepancy, we analyzed behaviors of centrosomes and microtubules in Drosophila cells, in culture and in vivo, using a combination of live-cell imaging, electron microscopy, and RNAi. The canonical model of the cycle of centrosome function in animal cells states that centrosomes act as microtubule-organizing centers throughout the cell cycle. Unexpectedly, we found that many Drosophila cell-types display an altered cycle, in which functional centrosomes are only present during cell division. On mitotic exit, centrosomes disassemble producing interphase cells containing centrioles that lack microtubule-nucleating activity. Furthermore, steady-state interphase microtubule levels are not changed by codepleting both gamma-tubulins. However, gamma-tubulin RNAi delays microtubule regrowth after depolymerization, suggesting that it may function partially redundantly with another pathway. Therefore, we examined additional microtubule nucleating factors and found that Mini-spindles, CLIP-190, EB1, or dynein RNAi also delayed microtubule regrowth; surprisingly, this was not further prolonged when we codepleted gamma-tubulins. Taken together, these results modify our view of the cycle of centrosome function and reveal a multi-component acentrosomal microtubule assembly pathway to establish interphase microtubule arrays in Drosophila.
在动物细胞中,中心体形成微管,微管构成极化阵列以组织细胞质。然而,果蝇却呈现出一个有趣的矛盾现象,因为缺乏中心体的突变动物能够发育成存活的成虫。为了理解这种差异,我们结合活细胞成像、电子显微镜和RNA干扰技术,分析了果蝇细胞在体外培养和体内环境下中心体和微管的行为。动物细胞中中心体功能循环的经典模型表明,中心体在整个细胞周期中都作为微管组织中心发挥作用。出乎意料的是,我们发现许多果蝇细胞类型呈现出一种改变了的循环,其中功能性中心体仅在细胞分裂期间存在。在有丝分裂结束时,中心体解体,产生含有缺乏微管成核活性的中心粒的间期细胞。此外,同时敲除两种γ-微管蛋白并不会改变稳态间期微管水平。然而,γ-微管蛋白RNA干扰会延迟微管解聚后的重新生长,这表明它可能与另一条途径部分冗余发挥作用。因此,我们研究了其他微管成核因子,发现敲除小纺锤体、CLIP-190、EB1或动力蛋白的RNA也会延迟微管重新生长;令人惊讶地是,但当我们同时敲除γ-微管蛋白时,这种延迟并没有进一步延长。综上所述,这些结果改变了我们对中心体功能循环的看法,并揭示了一种多组分无中心体微管组装途径,以在果蝇中建立间期微管阵列。