Suppr超能文献

多组分组装途径有助于在间期果蝇细胞中形成无中心体微管阵列。

A multicomponent assembly pathway contributes to the formation of acentrosomal microtubule arrays in interphase Drosophila cells.

作者信息

Rogers Gregory C, Rusan Nasser M, Peifer Mark, Rogers Stephen L

机构信息

Department of Biology, Lineberger Comprehensive Cancer Center, and Carolina Center for Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.

出版信息

Mol Biol Cell. 2008 Jul;19(7):3163-78. doi: 10.1091/mbc.e07-10-1069. Epub 2008 May 7.

Abstract

In animal cells, centrosomes nucleate microtubules that form polarized arrays to organize the cytoplasm. Drosophila presents an interesting paradox however, as centrosome-deficient mutant animals develop into viable adults. To understand this discrepancy, we analyzed behaviors of centrosomes and microtubules in Drosophila cells, in culture and in vivo, using a combination of live-cell imaging, electron microscopy, and RNAi. The canonical model of the cycle of centrosome function in animal cells states that centrosomes act as microtubule-organizing centers throughout the cell cycle. Unexpectedly, we found that many Drosophila cell-types display an altered cycle, in which functional centrosomes are only present during cell division. On mitotic exit, centrosomes disassemble producing interphase cells containing centrioles that lack microtubule-nucleating activity. Furthermore, steady-state interphase microtubule levels are not changed by codepleting both gamma-tubulins. However, gamma-tubulin RNAi delays microtubule regrowth after depolymerization, suggesting that it may function partially redundantly with another pathway. Therefore, we examined additional microtubule nucleating factors and found that Mini-spindles, CLIP-190, EB1, or dynein RNAi also delayed microtubule regrowth; surprisingly, this was not further prolonged when we codepleted gamma-tubulins. Taken together, these results modify our view of the cycle of centrosome function and reveal a multi-component acentrosomal microtubule assembly pathway to establish interphase microtubule arrays in Drosophila.

摘要

在动物细胞中,中心体形成微管,微管构成极化阵列以组织细胞质。然而,果蝇却呈现出一个有趣的矛盾现象,因为缺乏中心体的突变动物能够发育成存活的成虫。为了理解这种差异,我们结合活细胞成像、电子显微镜和RNA干扰技术,分析了果蝇细胞在体外培养和体内环境下中心体和微管的行为。动物细胞中中心体功能循环的经典模型表明,中心体在整个细胞周期中都作为微管组织中心发挥作用。出乎意料的是,我们发现许多果蝇细胞类型呈现出一种改变了的循环,其中功能性中心体仅在细胞分裂期间存在。在有丝分裂结束时,中心体解体,产生含有缺乏微管成核活性的中心粒的间期细胞。此外,同时敲除两种γ-微管蛋白并不会改变稳态间期微管水平。然而,γ-微管蛋白RNA干扰会延迟微管解聚后的重新生长,这表明它可能与另一条途径部分冗余发挥作用。因此,我们研究了其他微管成核因子,发现敲除小纺锤体、CLIP-190、EB1或动力蛋白的RNA也会延迟微管重新生长;令人惊讶地是,但当我们同时敲除γ-微管蛋白时,这种延迟并没有进一步延长。综上所述,这些结果改变了我们对中心体功能循环的看法,并揭示了一种多组分无中心体微管组装途径,以在果蝇中建立间期微管阵列。

相似文献

引用本文的文献

2
Generating CRISPR-edited clonal lines of cultured S2 cells.生成经CRISPR编辑的培养S2细胞克隆系。
Biol Methods Protoc. 2024 Aug 17;9(1):bpae059. doi: 10.1093/biomethods/bpae059. eCollection 2024.
6
The E3 ligase Poe promotes Pericentrin degradation.E3 连接酶 Poe 促进中心体蛋白的降解。
Mol Biol Cell. 2023 Aug 1;34(9):br15. doi: 10.1091/mbc.E22-11-0534. Epub 2023 Jun 21.
10
Mechanisms of microtubule organization in differentiated animal cells.分化动物细胞中微管组织的机制。
Nat Rev Mol Cell Biol. 2022 Aug;23(8):541-558. doi: 10.1038/s41580-022-00473-y. Epub 2022 Apr 5.

本文引用的文献

6
Genes required for mitotic spindle assembly in Drosophila S2 cells.果蝇S2细胞有丝分裂纺锤体组装所需的基因。
Science. 2007 Apr 20;316(5823):417-21. doi: 10.1126/science.1141314. Epub 2007 Apr 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验