Suppr超能文献

神经酰胺对神经祖细胞运动的调节及其对小鼠脑发育的潜在影响。

Regulation of neural progenitor cell motility by ceramide and potential implications for mouse brain development.

作者信息

Wang Guanghu, Krishnamurthy Kannan, Chiang Ying-Wei, Dasgupta Somsankar, Bieberich Erhard

机构信息

Program in Developmental Neurobiology, Institute of Molecular Medicine and Genetics, School of Medicine, Medical College of Georgia, Augusta, Georgia, USA.

出版信息

J Neurochem. 2008 Jul;106(2):718-33. doi: 10.1111/j.1471-4159.2008.05451.x. Epub 2008 May 2.

Abstract

We provide evidence that the sphingolipid ceramide, in addition to its pro-apoptotic function, regulates neural progenitor (NP) motility in vitro and brain development in vivo. Ceramide (N-palmitoyl d-erythro sphingosine and N-oleoyl d-erythro sphingosine) and the ceramide analog N-oleoyl serinol (S18) stimulate migration of NPs in scratch (wounding) migration assays. Sphingolipid depletion by inhibition of de novo ceramide biosynthesis, or ceramide inactivation using an anti-ceramide antibody, obliterates NP motility, which is restored by ceramide or S18. These results suggest that ceramide is crucial for NP motility. Wounding of the NP monolayer activates neutral sphingomyelinase indicating that ceramide is generated from sphingomyelin. In membrane processes, ceramide is co-distributed with its binding partner atypical protein kinase C zeta/lambda (aPKC), and Cdc42, alpha/beta-tubulin, and beta-catenin, three proteins involved in aPKC-dependent regulation of cell polarity and motility. Sphingolipid depletion by myriocin prevents membrane translocation of aPKC and Cdc42, which is restored by ceramide or S18. These results suggest that ceramide-mediated membrane association of aPKC/Cdc42 is important for NP motility. In vivo, sphingolipid depletion leads to ectopic localization of mitotic or post-mitotic neural cells in the embryonic brain, while S18 restores the normal brain organization. In summary, our study provides novel evidence that ceramide is critical for NP motility and polarity in vitro and in vivo.

摘要

我们提供的证据表明,鞘脂神经酰胺除了具有促凋亡功能外,还在体外调节神经祖细胞(NP)的运动能力,并在体内影响大脑发育。神经酰胺(N-棕榈酰基-d-赤藓糖神经鞘氨醇和N-油酰基-d-赤藓糖神经鞘氨醇)以及神经酰胺类似物N-油酰基丝氨醇(S18)在划痕(创伤)迁移实验中可刺激神经祖细胞的迁移。通过抑制神经酰胺的从头生物合成来消耗鞘脂,或使用抗神经酰胺抗体使神经酰胺失活,均会消除神经祖细胞的运动能力,而神经酰胺或S18可恢复这种能力。这些结果表明,神经酰胺对神经祖细胞的运动能力至关重要。神经祖细胞单层的创伤可激活中性鞘磷脂酶,这表明神经酰胺是由鞘磷脂产生的。在膜过程中,神经酰胺与其结合伴侣非典型蛋白激酶C ζ/λ(aPKC)以及Cdc42、α/β-微管蛋白和β-连环蛋白共同分布,这三种蛋白参与aPKC依赖的细胞极性和运动调节。青霉胺消耗鞘脂可阻止aPKC和Cdc42的膜易位,而神经酰胺或S18可恢复这种易位。这些结果表明,神经酰胺介导的aPKC/Cdc42膜结合对于神经祖细胞的运动能力很重要。在体内,鞘脂消耗会导致胚胎大脑中有丝分裂或有丝分裂后神经细胞的异位定位,而S18可恢复正常的脑组织。总之,我们的研究提供了新的证据,表明神经酰胺在体外和体内对神经祖细胞的运动能力和极性至关重要。

相似文献

1
Regulation of neural progenitor cell motility by ceramide and potential implications for mouse brain development.
J Neurochem. 2008 Jul;106(2):718-33. doi: 10.1111/j.1471-4159.2008.05451.x. Epub 2008 May 2.
2
Primary cilia in stem cells and neural progenitors are regulated by neutral sphingomyelinase 2 and ceramide.
Mol Biol Cell. 2014 Jun;25(11):1715-29. doi: 10.1091/mbc.E13-12-0730. Epub 2014 Apr 2.
3
Regulation of primary cilia formation by ceramide.
J Lipid Res. 2009 Oct;50(10):2103-10. doi: 10.1194/jlr.M900097-JLR200. Epub 2009 Apr 16.
8
Cdc42 acts downstream of Bazooka to regulate neuroblast polarity through Par-6 aPKC.
J Cell Sci. 2007 Sep 15;120(Pt 18):3200-6. doi: 10.1242/jcs.014902. Epub 2007 Aug 28.
9
FTY720 inhibits ceramide synthases and up-regulates dihydrosphingosine 1-phosphate formation in human lung endothelial cells.
J Biol Chem. 2009 Feb 27;284(9):5467-77. doi: 10.1074/jbc.M805186200. Epub 2009 Jan 1.
10
Characterization of an apical ceramide-enriched compartment regulating ciliogenesis.
Mol Biol Cell. 2012 Aug;23(16):3156-66. doi: 10.1091/mbc.E12-02-0079. Epub 2012 Jun 20.

引用本文的文献

1
Sphingolipid metabolism orchestrates establishment of the hair follicle stem cell compartment.
J Cell Biol. 2025 Apr 7;224(4). doi: 10.1083/jcb.202403083. Epub 2025 Jan 29.
5
Sphingomyelin Depletion Inhibits CXCR4 Dynamics and CXCL12-Mediated Directed Cell Migration in Human T Cells.
Front Immunol. 2022 Jul 12;13:925559. doi: 10.3389/fimmu.2022.925559. eCollection 2022.
7
Perspectives on Mechanisms Supporting Neuronal Polarity From Small Animals to Humans.
Front Cell Dev Biol. 2022 Apr 19;10:878142. doi: 10.3389/fcell.2022.878142. eCollection 2022.
8
Compartmentalization of Sphingolipid metabolism: Implications for signaling and therapy.
Pharmacol Ther. 2022 Apr;232:108005. doi: 10.1016/j.pharmthera.2021.108005. Epub 2021 Sep 25.
10
Ceramide launches an acute anti-adhesion pro-migration cell signaling program in response to chemotherapy.
FASEB J. 2020 Jun;34(6):7610-7630. doi: 10.1096/fj.202000205R. Epub 2020 Apr 20.

本文引用的文献

1
Confluence induced threonine41/serine45 phospho-beta-catenin dephosphorylation via ceramide-mediated activation of PP1cgamma.
Biochim Biophys Acta. 2007 Dec;1771(12):1418-28. doi: 10.1016/j.bbalip.2007.10.003. Epub 2007 Nov 8.
3
Lysenin: a sphingomyelin specific pore-forming toxin.
Biochim Biophys Acta. 2008 Mar;1780(3):612-8. doi: 10.1016/j.bbagen.2007.09.001. Epub 2007 Sep 15.
4
Monitoring the distribution and dynamics of signaling microdomains in living cells with lipid-specific probes.
Cell Mol Life Sci. 2007 Oct;64(19-20):2492-504. doi: 10.1007/s00018-007-7281-x.
5
Similar requirements for CDC-42 and the PAR-3/PAR-6/PKC-3 complex in diverse cell types.
Dev Biol. 2007 May 1;305(1):347-57. doi: 10.1016/j.ydbio.2007.02.022. Epub 2007 Feb 21.
6
Ceramide recruits and activates protein kinase C zeta (PKC zeta) within structured membrane microdomains.
J Biol Chem. 2007 Apr 27;282(17):12450-7. doi: 10.1074/jbc.M700082200. Epub 2007 Feb 17.
8
Development and characterization of a novel anti-ceramide antibody.
J Lipid Res. 2007 Apr;48(4):968-75. doi: 10.1194/jlr.D600043-JLR200. Epub 2007 Jan 8.
10
Cdc42 deficiency causes Sonic hedgehog-independent holoprosencephaly.
Proc Natl Acad Sci U S A. 2006 Oct 31;103(44):16520-5. doi: 10.1073/pnas.0603533103. Epub 2006 Oct 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验