François Paul, Hakim Vincent, Siggia Eric D
Center for Studies in Physics and Biology, The Rockefeller University, New York, NY 10065, USA.
Mol Syst Biol. 2007;3:154. doi: 10.1038/msb4100192. Epub 2007 Dec 18.
Segmentation is a common feature of disparate clades of metazoans, and its evolution is a central problem of evolutionary developmental biology. We evolved in silico regulatory networks by a mutation/selection process that just rewards the number of segment boundaries. For segmentation controlled by a static gradient, as in long-germ band insects, a cascade of adjacent repressors reminiscent of gap genes evolves. For sequential segmentation controlled by a moving gradient, similar to vertebrate somitogenesis, we invariably observe a very constrained evolutionary path or funnel. The evolved state is a cell autonomous 'clock and wavefront' model, with the new attribute of a separate bistable system driven by an autonomous clock. Early stages in the evolution of both modes of segmentation are functionally similar, and simulations suggest a possible path for their interconversion. Our computation illustrates how complex traits can evolve by the incremental addition of new functions on top of pre-existing traits.
分段是后生动物不同进化枝的一个共同特征,其进化是进化发育生物学的核心问题。我们通过一个仅奖励节段边界数量的突变/选择过程,在计算机上模拟了调控网络的进化。对于由静态梯度控制的分段,如在长胚带昆虫中,会进化出一系列类似于间隙基因的相邻抑制因子。对于由移动梯度控制的顺序分段,类似于脊椎动物的体节发生,我们总是观察到一条非常受限的进化路径或漏斗状路径。进化后的状态是一种细胞自主的“时钟和波前”模型,具有由自主时钟驱动的独立双稳态系统这一新特性。两种分段模式进化的早期阶段在功能上相似,模拟结果表明了它们相互转换的可能路径。我们的计算说明了复杂性状如何通过在现有性状之上逐步添加新功能而进化。