Pumphrey Graham M, Madsen Eugene L
Department of Microbiology, Cornell University, Ithaca, NY 14853-8101, USA.
Appl Environ Microbiol. 2008 Jul;74(13):4111-8. doi: 10.1128/AEM.00464-08. Epub 2008 May 9.
We used a combination of stable isotope probing (SIP), gas chromatography-mass spectrometry-based respiration, isolation/cultivation, and quantitative PCR procedures to discover the identity and in situ growth of soil microorganisms that metabolize benzoic acid. We added [(13)C]benzoic acid or [(12)C]benzoic acid (100 microg) once, four times, or five times at 2-day intervals to agricultural field plots. After monitoring (13)CO(2) evolution from the benzoic acid-dosed soil, field soils were harvested and used for nucleic acid extraction and for cultivation of benzoate-degrading bacteria. Exposure of soil to benzoate increased the number of culturable benzoate degraders compared to unamended soil, and exposure to benzoate shifted the dominant culturable benzoate degraders from Pseudomonas species to Burkholderia species. Isopycnic separation of heavy [(13)C]DNA from the unlabeled fraction allowed terminal restriction fragment length polymorphism (T-RFLP) analyses to confirm that distinct 16S rRNA genes were localized in the heavy fraction. Phylogenetic analysis of sequenced 16S rRNA genes revealed a predominance (15 of 58 clones) of Burkholderia species in the heavy fraction. Burkholderia sp. strain EBA09 shared 99.5% 16S rRNA sequence similarity with a group of clones representing the dominant RFLP pattern, and the T-RFLP fragment for strain EBA09 and a clone from that cluster matched the fragment enriched in the [(13)C]DNA fraction. Growth of the population represented by EBA09 during the field-dosing experiment was demonstrated by using most-probable-number-PCR and primers targeting EBA09 and the closely related species Burkholderia hospita. Thus, the target population identified by SIP not only actively metabolized benzoic acid but reproduced in the field upon the addition of the substrate.
我们采用了稳定同位素探测(SIP)、基于气相色谱 - 质谱的呼吸分析、分离/培养以及定量PCR等方法的组合,来确定代谢苯甲酸的土壤微生物的身份及其原位生长情况。我们以两天为间隔,向农田地块一次性、四次或五次添加[(13)C]苯甲酸或[(12)C]苯甲酸(100微克)。在监测了添加苯甲酸的土壤中(13)CO(2)的释放情况后,采集田间土壤用于核酸提取以及培养降解苯甲酸的细菌。与未添加苯甲酸的土壤相比,土壤接触苯甲酸后可培养的苯甲酸降解菌数量增加,并且接触苯甲酸使可培养的优势苯甲酸降解菌从假单胞菌属转变为伯克霍尔德菌属。通过从未标记部分中进行等密度分离重[(13)C]DNA,进行末端限制性片段长度多态性(T - RFLP)分析,以确认不同的16S rRNA基因定位于重相中。对已测序的16S rRNA基因进行系统发育分析表明,重相中伯克霍尔德菌属占主导(58个克隆中有15个)。伯克霍尔德菌属菌株EBA09与一组代表主要RFLP模式的克隆的16S rRNA序列相似度为99.5%,并且菌株EBA09和该簇中的一个克隆的T - RFLP片段与[(13)C]DNA部分中富集的片段相匹配。通过使用最可能数PCR以及针对EBA09和密切相关物种伯克霍尔德菌属医院亚种的引物,证明了在田间添加实验期间由EBA09代表的菌群的生长。因此,通过SIP鉴定出的目标菌群不仅能积极代谢苯甲酸,而且在添加底物后能在田间繁殖。