Morin Jean-Paul, Hasson Virginie, Fall Mamadou, Papaioanou Eleni, Preterre David, Gouriou Frantz, Keravec Veronika, Konstandopoulos Athanasios, Dionnet Frédéric
INSERM U644, Université de Rouen, 22 bd Gambetta, 76183 Rouen Cedex, France.
Exp Toxicol Pathol. 2008 Jun;60(2-3):195-205. doi: 10.1016/j.etp.2008.01.007. Epub 2008 May 12.
Diesel engine emission aerosol-induced toxicity patterns were compared using both in vitro (organotypic cultures of lung tissue) and in vivo experimentations mimicking the inhalation situation with continuous aerosol flow exposure designs. Using liquid media resuspended diesel particles, we show that toxic response pattern is influenced by the presence of tensioactive agent in the medium which alter particle-borne pollutant bioavailability. Using continuous aerosol exposure in vitro, we show that with high sulfur fuel (300ppm) in the absence of oxidation catalysis, particulate matter was the main toxic component triggering DNA damage and systemic inflammation, while a very limited oxidant stress was evidenced. In contrast, with ultra-low sulfur fuel in the presence of strong diesel oxidation catalysis, the specific role of particulate matter is no longer evidenced and the gas phase then becomes the major component triggering strong oxidant stress, increased NO(2) being the most probable trigger. In vivo, plasma tumor necrosis factor alpha (TNFalpha), lung superoxide dismutase (SOD), catalase and glutathione peroxidase (GPx) activity levels varied in agreement with in vitro observations. Diesel emission treatment with oxycat provokes a marked systemic oxidant stress. Again NO(2) proved to account for a major part of these impacts. In conclusion, similar anti-oxidant responses were observed in in vitro and in vivo experiments after diesel emission aerosol continuous flow exposures. The lung slice organotypic culture model-exposed complex aerosol appears to be a very valuable alternative to in vivo inhalation toxicology experimentations in rodents.
通过体外(肺组织器官型培养)和体内实验(采用连续气溶胶流暴露设计模拟吸入情况),比较了柴油发动机排放气溶胶诱导的毒性模式。使用液体介质重悬柴油颗粒,我们发现毒性反应模式受介质中表面活性剂的影响,表面活性剂会改变颗粒携带污染物的生物利用度。通过体外连续气溶胶暴露,我们发现,在没有氧化催化的情况下使用高硫燃料(300ppm)时,颗粒物是引发DNA损伤和全身炎症的主要毒性成分,而氧化应激非常有限。相比之下,在强柴油氧化催化存在的情况下使用超低硫燃料时,颗粒物的特定作用不再明显,气相随后成为引发强氧化应激的主要成分,二氧化氮增加最有可能是触发因素。在体内,血浆肿瘤坏死因子α(TNFα)、肺超氧化物歧化酶(SOD)、过氧化氢酶和谷胱甘肽过氧化物酶(GPx)活性水平的变化与体外观察结果一致。用氧化催化剂处理柴油排放会引发明显的全身氧化应激。二氧化氮再次被证明是这些影响的主要原因。总之,在柴油排放气溶胶连续流暴露后的体外和体内实验中观察到了类似的抗氧化反应。暴露于复合气溶胶的肺切片器官型培养模型似乎是啮齿动物体内吸入毒理学实验的一个非常有价值的替代方法。