Suppr超能文献

使用桥接燃烧器算法从T1加权磁共振成像中全自动分割大脑。

Fully automatic segmentation of the brain from T1-weighted MRI using Bridge Burner algorithm.

作者信息

Mikheev Artem, Nevsky Gregory, Govindan Siddharth, Grossman Robert, Rusinek Henry

机构信息

Department of Radiology, New York University School of Medicine, New York, New York 10016, USA.

出版信息

J Magn Reson Imaging. 2008 Jun;27(6):1235-41. doi: 10.1002/jmri.21372.

Abstract

PURPOSE

To validate Bridge Burner, a new brain segmentation algorithm based on thresholding, connectivity, surface detection, and a new operator of constrained growing.

MATERIALS AND METHODS

T1-weighted MR images were selected at random from three previous neuroimaging studies to represent a spectrum of system manufacturers, pulse sequences, subject ages, genders, and neurological conditions. The ground truth consisted of brain masks generated manually by a consensus of expert observers. All cases were segmented using a common set of parameters.

RESULTS

Bridge Burner segmentation errors were 3.4% +/- 1.3% (volume mismatch) and 0.34 +/- 0.17 mm (surface mismatch). The disagreement among experts was 3.8% +/- 2.0% (volume mismatch) and 0.48 +/- 0.49 mm (surface mismatch). The error obtained using the brain extraction tool (BET), a widely used brain segmentation program, was 8.3% +/- 9.1%. Bridge Burner brain masks are visually similar to the masks generated by human experts. Areas affected by signal intensity nonuniformity artifacts were occasionally undersegmented, and meninges and large sinuses were often falsely classified as the brain tissue. Segmentation of one MRI dataset takes seven seconds.

CONCLUSION

The new fully automatic algorithm appears to provide accurate brain segmentation from high-resolution T1-weighted MR images.

摘要

目的

验证Bridge Burner,一种基于阈值处理、连通性、表面检测以及一种新的约束生长算子的新型脑部分割算法。

材料与方法

从之前的三项神经影像学研究中随机选择T1加权磁共振图像,以代表一系列系统制造商、脉冲序列、受试者年龄、性别和神经状况。真实标准由专家观察者一致手动生成的脑掩码组成。所有病例均使用一组通用参数进行分割。

结果

Bridge Burner的分割误差为3.4%±1.3%(体积不匹配)和0.34±0.17毫米(表面不匹配)。专家之间的差异为3.8%±2.0%(体积不匹配)和0.48±0.49毫米(表面不匹配)。使用广泛使用的脑部分割程序脑提取工具(BET)获得的误差为8.3%±9.1%。Bridge Burner脑掩码在视觉上与人类专家生成的掩码相似。受信号强度不均匀伪影影响的区域偶尔分割不足,脑膜和大静脉窦经常被错误分类为脑组织。分割一个MRI数据集需要7秒。

结论

这种新的全自动算法似乎能从高分辨率T1加权磁共振图像中提供准确的脑部分割。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3b2b/3840426/de6cacb50891/nihms114439f1.jpg

相似文献

引用本文的文献

本文引用的文献

5
Quantitative comparison of four brain extraction algorithms.四种脑提取算法的定量比较。
Neuroimage. 2004 Jul;22(3):1255-61. doi: 10.1016/j.neuroimage.2004.03.010.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验